DOE/BETC/2215-1 Distribution Category UC-92a # METHODS FOR DETERMINING VENTED VOLUMES DURING GAS WELL BLOWOUTS Ву Murray F. Hawkins, Jr., Principal Investigator Zaki Bassiouni William J. Bernard Adam T. Bourgoyne Michael J. Veazey Walter R. Whitehead Coastal Petroleum Associates, Inc. P.O. Drawer 16450-B Baton Rouge, Louisiana 70893 504/769-1321 C. Ray Williams, Technical Project Officer U.S. Department of Energy Bartlesville Energy Technology Center P.O. Box 1398 Bartlesville, Oklahoma 74003 918/336-2400, Ext. 359 Prepared for the U.S. Department of Energy Under P.O. No. P-B-9-2215 and Funded by USGS/OCS Oil and Gas Operations Date Submitted—July 1980 Date Published—October 1980 U.S. DEPARTMENT OF ENERGY #### **FOREWORD** When hydrocarbons are lost from a well during a blowout, methods for estimating the lost volumes are often needed by both industry and government. This publication provides the currently accepted calculation methods for gas blowouts and proposes some methods which need further definition. This work was funded by the Research and Development Program for Outer Continental Shelf Oil and Gas Operations of the U.S. Geological Survey in cooperation with Bartlesville Energy Technology Center (BETC) of the U.S. Department of Energy. BETC provided contracting, monitoring and technology transfer through its Drilling Technology Program. A similar work effort is being performed by the same contractor to assess the technology for estimating liquid hydrocarbon volumes lost during blowouts. John B. Gregory Research Program Manager OCS Oil and Gas Operations U.S.G.S., Reston, VA C. Ray Williams Project Manager Drilling and Offshore Technology Bartlesville Energy Technology Center U. S. Department of Energy Bartlesville, OK #### ABSTRACT Several methods are presented for determining vented volumes during gas well blowouts. The methods described apply to gas production in which no liquids phase(s), hydrocarbon and/or water, are present in the gas. Each method is illustrated with a numerical example. Sensitivity analyses provide estimates of probable errors. The method of crossplotting formation and flow string resistances is the only one which does not require special measurements. It is therefore applicable to cratered wells and underwater blowouts. The report includes several suggestions for investigations which might lead to better methods. ## CONTENTS | p | age | |------|--------------------------|---------------------------------|--------------------------|------------------|-------------------|-----------|-----------------|------------------|-----------------|-----------|-----|---------|-----|-----|----|-----|----|---|---|---|---|---|----------------------| | Abst | ract . | • | | • | • | • | • | ٥ | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | ii | | 1. | INDUS | STRY | SU | RVI | ΞY | 1,4 | Int
Gue
Eng
Dir
Ext | sst
ine
ect | ima
er: | ate
ing
eas | es
g (| Cal | cu | la
ts | ti | on | .s | • | • | • | • | • | • | | • | • | • | 1
2
2
3 | | 2. | MATEI | RIAL | ВА | LA | NCE | 1 E | 4ET | ΉO | DS | | | | | | | | | | | | | | | | | 2.1
2.2
2.3 | Int
The
Exa | ory | a | nd | F | orn | nu 1 | as | 1 | • | | • | • | • | • | • | • | • | • | • | • | 4
4 | | | | Bal
Cri | anc | e
que | Me' | tho
f | od
the | ·
E | ·
xa | mp | 1 | • | • | | | • | • | 0 | • | • | ۰ | • | 5
8 | | 3. | FLOW | RAI | E N | 1EA | SU | REI | MEI | VTS | N | ΙΙΊ | Ή | P: | ΙΤ | ТС | Τl | JBI | ES | | | | | | | | | 3.1
3.2
3.3
3.4 | Des
Pit
Flo | ot
w 1 | ipt
Tu
Rat | io:
be
e | n F
De | of
orr
te | th
nul
rmi | ie
.a
.na | Pi
ati | Lto | ot
o | T 1 | u b | Э | | | • | | ٥ | | • | 11
11
13
13 | | | 3.5
3.6 | wit | Lus'
th l
nit | Err | or | Α | na: | lys | sis | 3 | to: | t. | Tu | be | a | • | • | • | • | | | o | 15 | | | | Apj | oli | cat | io | n | • | • | • | • | • | • | • | • | • | • | o | • | • | • | • | • | 17 | | 4 . | MEAS | UREI | MEN' | TS | ΙN | В | LE: | ΕD | L | INI | ES | | | | | | | | | | | | | | | 4.1
4.2
4.3 | Bl. | lus | Li
tra | ne
ti | F
ve | 10
E | хaг | np. | le | • | | • | ns | • | • | • | • | 0 | • | • | • | 19
21
25 | | | 4,4 | of | mıt
Bl | ati
eed | i L | is
Jin | an
.e | Fl | WC | Cu. | al | cu | la | ti | on | S | • | • | ٥ | • | • | • | 28 | | 5. | EXTRA | POL | ATI | ON | OF | ' M | ΙEΑ | SU | RE: | D | ΟP | ΕN | F | LO | W | RΑ | ΤE | S | | | | | | | | 5.1
5.2
5.3
5.4 | Di
Ex | tro
ver
amp
ror | tir
1e | ng
Il | Bl
lu | .ow | ou
ra | ts
ti | ng | E | x t | ra | .pc | la | ti | on | • | • | • | • | | 34
34
35
37 | | 6. | ESTI | MATES FROM BACK PRESSURE TESTS P | age | |-------|---|---|----------------------------------| | | 6.1
6.2
6.3 | from Back Pressure Tests | 39 | | | 6.4 | on the Blowout Well | 42 | | | 6.5 | Wells in the Same Reservoir | 44
45 | | 7. | FORM | ATION RESISTANCE | | | | 7.1
7.2
7.3
7.4
7.5
7.6
7.7 | | 49
50
51
52 | | 8. | FLOW | STRING RESISTANCE | | | | 8.8
8.9 | Potential Energy Term Friction Term Kinetic Energy Term Limiting Flow of Compressible Fluids Calculation Procedure Illustrative Example | 52
57
58
59
72
73 | | 9. | CROSS | S PLOTS OF FORMATION AND FLOW STRING RESISTANCE | S | | | 9.2 | Introduction | 5
6
8 | | 10. | SUGGE | ESTIONS FOR FURTHER INVESTIGATION | | | | 10.2 | Introduction | 0 | | REFEI | RENCES | | 2 | # SECTION 1 INDUSTRY SURVEY ### 1.1 Introduction A survey of several major oil companies, independents and companies which service the petroleum industry reveals no standard method for estimating amounts of gas lost during blowouts. Discussions during the survey made it apparent that, owing to the varied conditions of blowouts, there can not be a standard method. The methods reported in current use can be broadly categorized as: - 1.2 Guesstimates - 1.3 Engineering Calculations - 1.4 Direct Measurements - 1.5 Extrapolations Each of these methods has its advantages and limitations. They are briefly described in this section and treated in detail in other sections of this report. #### 1.2 Guesstimates The widest margin of error probably occurs with techniques based mainly on intuition or experience, assisted only by crude measurements with no associated calculations which are usually influenced consciously or unconsciously by parameters such as height of the flame, noise level, deflection of a sledge hammer handle placed in the gas flow stream, etc. These are classified as guesstimates. The purpose of guesstimates is usually to establish an order of magnitude and not to provide precise values for engineering or economic determinations. They are used primarily to size equipment to be used in bringing the well under control and are certainly subject to considerable error. The technique, which is highly individualized and in some cases surprisingly accurate, depends mainly on the experience and background of the guesser. In times past when flaring was more prevalent and regulations more lax, many people developed a good intuitive feeling for blowout flow rates by comparison with past jets or flares of reasonably well known rates. However, the passing of time and the scarcity of intentional flaring has diminished this intuitive feeling substantially within the industry. Although it is conceivable that they exist, no calibration curves relating vented volume with such things as flare height, noise level, heat intensity or hammer handle deflection were uncovered in the literature or during the industry survey. Depending on circumstances, surface conditions, personal danger, and the ability to position measuring equipment into the flow stream, a guesstimate may be the only approach to obtain vented volumes. However, under certain conditions, more accurate estimates may be made. The details of some of these techniques outlined below are further discussed in other sections of this report. ## 1.3 Engineering Calculations If certain data are available or can be reasonably estimated, fluid flow calculations can bracket the vented flow rates between maximum and minimum values. Of course, where more is known about the several parameters, particularly the more sensitive ones, the bracket range is reduced. For the reservoir, the more important data include static reservoir pressure, productive stratum thickness, permeability, gas viscosity and reservoir temperature. For the flow string, the more important data include the geometry of the well bore flow path, e.g., through drill pipe or through the annulus, depth, gas specific gravity, reservoir temperature, and surface well head pressure. From these and other data it is possible to calculate separately the pressure losses in the formation (Section 7) and in the flow string (Section 8). A simultaneous consideration of these yields a value of the uncertainties in the several variables and the manner in which they enter into the calculations provides a measure of the uncertainty in the estimated flow rate. In some cases, where there is an appreciable decline in reservoir pressure during the blowout, the material balance method can be used to estimate the volume of vented gas. The use and limitations of this method are presented in Section 2. ## 1.4 Direct Measurement The most accurate technique of estimating vented gas is that of making measurements of the gas flow rate during the blowout. There are however, several obvious limitations. First, it is necessary to have the proper surface facilities to allow measurements to be made, i.e., diverter line and pressure taps; and a
reasonably safe condition must exist to allow personnel to make the measurements. In many cases the choke lines, diverter lines and other surface facilities are destroyed or rendered unusable by the blowout or a subsequent fire and measurements are impossible. In many of the remaining cases, it is just too dangerous to approach the well to make the necessary measurements. In the Arkoma Basin, where wells are commonly drilled with air, many prolific gas zones are drilled into with no mud in the hole thereby creating a condition of uncontrolled blowout for some period until the well is filled with mud. It is standard practice there to gauge the gas being vented by placing a Pitot tube in the flow stream for higher flow rate wells and by using a portable orifice tester for the lower rate wells. A discussion of the pitot tube and other direct measurement techniques is included in Sections 3 and 4. #### 1.5 Extrapolations In some cases, the blowout is partially contained and emergency gas sales are made while steps are taken to bring the well completely under control. It usually takes considerable time to accomplish this during which a reasonable decline curve may be established. This decline curve may be extrapolated back to the initial time of the blowout to approximate initial flow rate. The amount of gas lost is then mathematically estimated by formulas such as: $$Q = \frac{q_i - q_t}{a} \tag{1.1}$$ where: Q = gas volume produced between qi and qt, SCF q_i = initial gas flow rate, SCF/day q_t = gas flow rate at time t, SCF/day $a = decline factor, t^{-1}, days^{-1}$ The extrapolation method will be discussed in more detail in Section 5 and followed by a discussion of limitations and error ranges. # SECTION 2 MATERIAL BALANCE METHODS ### 2.1 Introduction For gas blowouts in which there is an appreciable drop in reservoir pressure during the blowout, the material balance method can in some instances be used to estimate the volume of vented gas. The pressure drop during the blowout should be a minimum of about five per cent of the initial pressure. Also, use of the material balance method is generally, but not exclusively, limited to volumetric gas reservoirs, i.e., those without water drive. The principle underlying the material balance method for gas reservoirs is quite simple. For ideal gas behavior and reservoirs with no pressure support mechanizms, e.g., water influx, the fraction of the reservoir gas produced and/or lost during a blowout is equal to the fractional loss in reservoir pressure. In its application, however, there are a number of complex aspects which should be carefully considered. Where the gas in place at start of blowout is determined by the volumetric method, consideration should be given to the accuracy of the several data required. ### 2.2 Theory and Formulas Application of the material balance method to determine vented gas requires first a determination of the reservoir gas in place at the start of blowout. Where there is sufficient pressure production history for the reservoir, the material balance method may be used. The following formula, Eq. (1.30) of Ref. 2.1 is a form of the material balance for gas reservoirs which have no water influx and from which no formation water is produced. $$\frac{p_{sc}g_{p}}{T_{sc}} = \frac{p_{i}V}{z_{i}T_{r}} - \frac{p_{f}V}{z_{f}T_{r}}$$ (2.1) in which p = standard cubic feet of gas produced during reservoir pressure drop (p_i-p_f). p_i,p_f = initial and final average reservoir pressures, psia. T_r = reservoir temperature, degrees Rankine. $z_i, z_f = gas deviation factors at temperature <math>T_r$ and pressures pi and pf, dimensionless. = reservoir hydrocarbon pore volume HCPV, cubic feet. The hydrocarbon pore volume can also be determined by the volumetric method where the necessary data are available. The following formula applies. $$V = 43,560 \times V_b \times \phi \times (1-S_w)$$ (2.2) where V = hydrocarbon pore volume, cubic feet V_b = reservoir bulk volume, acre-feet. ϕ = average reservoir porosity, fraction of pore volume. S_{W} = average connate water saturation, fraction of pore volume. Once the hydrocarbon pore volume has been obtained by either method, the gas in place at any pressure can be found using the following formula: $$G = V \times \frac{p \times T_{SC}}{z \times T_{r} \times p_{SC}}$$ (2.3) = standard cubic feet, SCF of gas in where G the reservoir at pressure p = hydrocarbon pore volume, cubic feet = average reservoir pressure, psia = reservoir temperature, degrees Rankine = gas deviation factor at p and $extsf{T}_{r}$. Tsc, psc = standard temperature and pressure, degrees Rankine and psia. Finally, then, the vented gas volume is calculated as the difference between the gas in place $G_{\hat{\mathbf{1}}}$ at start of blowout when reservoir pressure was p_i , and the gas in place f at end of blowout when pressure is f, less any produced gas f by other wells during the blowout, $$G_p(blowout) = G_i - G_f - G_p$$ (2.4) ## Example Using the Material Balance Method To illustrate the use of the material balance method, example 2.1 considers a gas reservoir with no water drive in which the discovery well Smith No. 1 had been producing long enough prior to the blowout in Smith No. 2 so that the material balance method could be used to determine the reservoir's hydrocarbon pore volume, using Eq. (2.1). Data were also available to make an independent determination of the hydrocarbon pore volume using Eq. (2.2). Using both of these determinations, the volumes of vented gas during the 61 day blowout in Smith No. 2 are calculated, making allowance for the continued production from Smith No. 1 during the blowout. #### Example 2.1 #### Data | 9,000 psiaInitial reservoir pressure, measured | |--| | in Smith No. 1 producing well 8,000 psiaReservoir pressure at start of blow- out, based on pressure history of Smith No. 1 | | 7,400 psiaReservoir pressure at end of blowout, | | 240°F700°R. reservoir temperature | | 1.29 @ 9,000 psia | | 1.23 @ 8,000 psiaGas deviation factors at 240°F 1.19 @ 7,400 psia | | 14.7 psia & 60°FStandard Conditions used | | 12x109 SCFSmith No. 1 production to start of blowout | | 61 daysDuration of blowout | | 720x10° SCFSmith No. 1 production during blow- | | ZeroSmith No. 1 formation water production | | ZeroEstimated reservoir water influx | | 76,700 acre-feetBulk reservoir volume, isonach man | | 25 per centAverage porosity | | 30 per centAverage connate water | | 13,000 feetReservoir depth 12.1 lb/galMud weight in Smith No. 2 at time | | of blowout | | | ### Calculations A-1 Hydrocarbon pore volume (HCPV) calculated by material balance using Smith No. 1 data, using Eq. (2.1): $$\frac{14.7 \times 12 \times 10^9}{520} = \frac{9,000 \text{ V}_{\text{HCPV}}}{1.29 \times 700} - \frac{8,000 \text{ V}_{\text{HCPV}}}{1.23 \times 700}$$ $V_{HCPV} = 0.503 \times 10^{9} \text{ft}^3$ A-2 Gas in place at start of blowout (t=0). Using Eq. (2.3): $G(t=0) = 0.503 \times 10^{9} \times \frac{8,000 \times 520}{1.23 \times 700 \times 14.7}$ $= 165.3 \times 10^{9} SCF$ A-3 Gas in place at end of blowout (t=61 days) Using Eq. (2.3): $G(t=61) = 0.503 \times 10^{9} \times \frac{7,400 \times 520}{1.19 \times 700 \times 14.7}$ $= 158.1 \times 10^{9} SCF$ - A-4 Vented blowout gas from Smith No. 2 using Eq. (2.4): $G_{p}(blowout) = G(t=0) G(t=61) G_{p}(Smith No. 1)$ $= 165.3x10^{9} 158.1x10^{9} 0.720x10^{9}$ $= 6.48x10^{9}SCF$ - A-5 Average Smith No. 2 blowout rate $$q_{sc} = \frac{6.48 \times 10^{9} SCF}{61 \text{ days}} = \frac{106 \text{ MMSCF/D}}{100 \text{ MMSCF/D}}$$ B-1 HCPV by Volumetric Method, using Eq. (2.2): $V_{HCPV} = 43,560xA(ac-ft)x\phi x(1-S_w)$ = 43,560x76,700x0.25x(1-0.30) $= 0.584x10^9 ft$ B-2 Gas in place at start of blowout (t=0) Using Eq. (2.3): $G(t=0) = 0.584 \times 10^{9} \times \frac{8,000 \times 520}{1.23 \times 700 \times 14.7}$ $= 191.9 \times 10^{9} SCF$ 7 B-3 Gas in place at end of blowout (t=61 days) Using Eq. (2.3): $$G(t=61) = 0.584 \times 10^{9} \times \frac{7,400 \times 520}{1.19 \times 700 \times 14.7}$$ $$= 183.6 \times 10^{9} SCF$$ B-4 Vented blowout gas from Smith No. 2 $$G_p(blowout) = G(t=0) - G(t=61) - G_p(Smith No. 1)$$ = $191.9x10^9 - 183.6x10^9 - 0.720x10^9$ = $7.58x10^9SCF$ B-5 Average Smith No. 2 blowout rate $$q_{sc} = \frac{7.58 \times 10^9}{61 \text{ days}} = \frac{124 \text{ MMSCF/D}}{}$$ C-1 Reservoir pressure at start of blowout calculated from Smith No. 2 mud weight p = 0.052(psi/ft/ppg)xW(ppg)xD(feet) = 0.052x12.1x13,000 = 8180 psia ## 2.4 Critique of the Example and the Method If the pressure production data from Smith No. 1 had been inadequate for using a material balance, or if Smith No. 2 had been the discovery and blowout well, the material balance method could not have been used to determine the hydrocarbon pore volume. It could only be determined if adequate data for the volumetric method, Eq. (2.2), were available. In the absence of pressure data from Smith No. 1 and/or if Smith No. 2 had been the discovery well, reservoir pressure at start of blowout could only be inferred from the mud weight (density) and depth as in Part C-1 of Example 2.1. A pressure at the end of the blowout would also be needed. Pressures obtained from mud weight and depth are subject to considerable error. The reservoir pressure may be higher or lower than that calculated from the mud weight and depth. If the blowout occurs during drilling, then the reservoir pressure is greater than the sum of the hydrostatic mud column pressure and the annular friction loss. Where blowouts occur during tripping operations, the reservoir pressure is less than the hydrostatic pressure of the mud column, owing to a reduction of well pressure below the bit by the swabbing action as the drill string is hoisted. Where the blowout is caused by failure to keep the hole full of mud, the reservoir
pressure is lower than that calculated from mud weight and depth. In many blowouts, good values of reservoir pressures are available when the blowout preventers are closed, i.e., the sum of the surface pressure gauge reading and the pressure of the hydrostatic column of mud in the drill pipe. The main uncertainty in determining the hydrocarbon pore volume by the material balance method, Eq. (2.1), derives from uncertainties in the pressures. From Eq. (2.1) it is seen that the hydrocarbon pore volume is inversely proportional to the difference $(p_i/z_i-p_f/z_f)$. For the example this difference is $$\frac{9000}{1.29} - \frac{8000}{1.23} = 6976 - 6504 = 472$$ Suppose owing to one of several causes, the pressure at start of blowout was really 8100 psia. Then $$\frac{9000}{1.29} - \frac{8100}{1.23} = 6976 - 6585 = 391$$ and the resultant value of the hydrocarbon pore volume using 8100 would be 0.607x10⁹ft³, or 17 per cent larger than the value calculated using 8000 psia. As the gas deviation factor at 8100 is a little larger than 1.23, the error would be a little bit larger than 17 per cent. A major cause for pressure errors is that the pressure measured in wells may not be the true average pressure of the reservoir, owing to differential delpetion of areas of the reservoir. Error analysis for the volumetric estimate of the hydrocarbon pore volume is straightforward. As the ranges of porosity and connate water are somewhat limited, the major source of error arises from the estimate of the bulk reservoir volume. Where the reservoir thickness is reasonably uniform, the bulk volume estimate is essentially an estimate of the productive area. In other cases the bulk volume is determined from isopach maps whose validity depends upon the number of control wells available and geological interpretation. Assuming the estimate of bulk reservoir volume contains the major uncertainty, the per cent error in the hydrocarbon pore volume is that of the uncertainty in the estimate of bulk reservoir volume. In the event Eq. (2.1) is used where there is water influx, calculated hydrocarbon pore volumes will be larger than the actual, and so will calculated volumes of gas in place. Thus, the calculated volumes of blowout gas will be larger than actual. Use of Eq. (2.1) therefore sets a maximum value to the vented gas volumes. Reference 2.2 contains a fuller discussion of the use of the volumetric and material balance methods on gas reservoirs. # SECTION 3 FLOW RATE MEASUREMENTS WITH PITOT TUBES ## 3.1 Introduction The Pitot tube can be used to measure gas flow rates from wells under open flow conditions (Refs. 3.1 and 3.2). It is used to sense the difference between the dynamic and static pressures in a moving gas stream. This pressure differential is equal to the velocity head and is measured by a suitable device. The velocity is then determined and used to evaluate gas flow rates. Although less sophisticated than other gas flow measurement devices, it is the best suited device for gas flow measurements during gas well blowouts, except where a diverter or bleed line has been installed. As the Pitot tube has been widely and successfully employed to obtain "Back-Pressure" test data on gas wells, many operators are familiar with its use. ## 3.2 Description of the Pitot Tube A sketch of the simple pitot tube, invented by H. Pitot, is shown in Fig. 3.1. This is sometimes called an impact tube or stagnation tube. The Pitot tube in principle is made by bending one leg of a manometer so that the opening is pointing exactly against the direction of gas flow. If one end of the manometer is left open to the atmosphere, the instrument indicates dynamic head, which is the sum of the static pressure and the pressure exerted by the velocity of the gas. The static pressure is measured by tapping the side of the line and measuring the pressure perpendicular to the line of flow. A sketch of a combined Pitot and static tube device is also shown in Fig. 3.1. By this arrangement the static head is automatically subtracted from the dynamic head so that the manometer reading is a measure of the velocity head. In open flow measurements the Pitot tube is located at the open end of the casing as shown also in Fig. 3.1. Where the other end of the manometer is left open to the atmosphere, the manometer reading is a measure of the velocity head. For small velocity heads the manometer liquid is water and for larger heads, mercury. For heads above 20 psi, Bourdon or dead weight gauges are used. Fig. 3.1 Pitot tubes: Simple Pitot and static tubes (upper); combined Pitot and static tubes (middle); and open flow Pitot tube (lower) Fig. 3.2 Drawing of a commercially available Pitot tube (Ref. 3.3). (Courtesy Chandler Engineering Company.) Figure 3.2 is a drawing of a Pitot tube which is available commercially (Ref. 3.3). It may be used for either open or closed flow. For high velocities and large diameter gas streams the tube shown would need to be strengthened and provided with a substantial support to position it in the stream. ## 3.3 Pitot Tube Formula For all velocities between zero and sonic velocity it can be reasonably assumed that the part of the main stream which is stopped by the impact tube is stopped isentropically. Under these conditions it has been shown (Ref. 3.1) that the stream velocity at the impact tube is given by: $$v = 58.58 E \left\{ \frac{n}{n-1} \frac{T}{G} \left[\left(\frac{p_i}{p_a} \right)^{\frac{n-1}{n}} - 1 \right] \right\}^{0.5}$$ (3.1) where v = velocity at Pitot tube, ft/sec n = ratio of specific heats of the gas p; = impact pressure indicated by the tube, psia p = static pressure which is atmospheric pressure in open subsonic flow, psia T = flowing temperature, OR G = gas gravity, (air=1) E = efficiency factor which is the ratio between theoretical and actual velocities. ## 3.4 Flow Rate Determination The velocity of gas through a circular pipe or annuli is not uniformly distributed (Ref. 3.4). Consequently, to determine the quantity of gas flowing, an average value for the gas velocity must be obtained. For approximate work involving circular flow cross section, the pitot tube can be located at the center of the pipe where the maximum velocity exists. The ratio of the average velocity and the maximum velocity may be assumed to be 0.862 (Ref. 3.5). The Pitot tube can also be placed at a point in the circular pipe where the actual velocity is equal to the average velocity of the entire cross section. This point is usually assumed to be on the circumference of a circle whose radius is 74 per cent of the radius of the pipe and concentric with the pipe (Ref. 3.6). Fig. 3.3. Traverse positions for four equal areas. Table I | Distances in | Per | Cent | from | Insid | e Sur | face | to Po | int o | f Tra | verse | |--------------------------|------|------|------|-------|-------|------|-------|-------|-------|-------------| | Number of
Equal Areas | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | <u>10th</u> | | 1 | 14.6 | 85.4 | | | | | | | | | | 2 | 6.7 | 25.0 | 75.0 | 93.3 | | | | | | | | 3 | 4.5 | 14.7 | 29.6 | 70.4 | 85.3 | 95.5 | | | | | | 4 | 3.4 | 10.6 | 19.5 | 32.3 | 67.7 | 80.5 | 89.4 | 96.6 | | | | 5 | 2.6 | 8.3 | 14.7 | 22.8 | 34,•2 | 65.8 | 77.2 | 85.3 | 91.7 | 97.4 | For more accurate work it is better to make a traverse of the pipe. A traverse is the only recommended method in annular flow as the position of maximum velocity or the mean velocity is hard to predict. a traverse, the pipe is first divided into a number of equal areas, a circle at the center and annular rings around it, as illustrated by Fig. 3.3. Mean diameters are determined for the annular rings, and where these cut the line of traverse, points are determined in which positions the Pitot tube is placed and a reading The two points in the inner circle are located where the circumference of the circle, having one-half the area of inner circle, cuts the line of traverse. Table I gives the distances in per cent from the inside surface of the pipe to the various positions of the traverse. The velocity at each reading position is calculated using Eq. (3.1). The arithmetic mean of these readings is the average velocity. In case the above method of running a traverse is impractical or if the flow is annular, several readings have to be taken on a diameter. The velocity at each position is calculated and a velocity distribution plot is constructed. The average velocity is then determined graphically. Where velocities are varying, several readings should be taken over a period of time to obtain average values. As the Pitot tube reading is correct only when the tube is exactly parallel to the current of flow (Ref. 3.4), it may be necessary to rotate the tube with respect to the pipe axis until a maximum reading is obtained. The quantity q of gas flowing through a duct is obtained as a product of the average velocity $^{\text{V}}{}_{\text{a}}$ and the duct area A. For a circular duct with inside diameter D: $$q = 0.471 D^2 v_a \frac{p T_{sc}}{p_{sc} T}$$ (3.2) #### where: q = flow rate, MSCF/D D = inside diameter, inches v_a = average velocity, ft/sec p = pressure of flowing gas, psia T = temperature of flowing gas, OR psc = standard pressure, psia T_{sc} = standard temperature, OR ## 3.5 Illustrative Example with Error Analysis The following example illustrates the use of Pitot tube measurements to calculate the gas flow rate where gas is blowing out to the atmosphere through 10-3/4 inch casing. Following the example, error analysis is applied to evaluate the precision of the measurement. ## Example 3.1 #### Data: | Casing diameter (I.D.) | .9.85 in | |------------------------------|----------| | Cas enecific gravity (Air=1) | 0.665 | | Flowing temperature | 85°F | | Barometric pressure | .65 psia | #### Pitot tube measurements: | No. | % Diameter
(Table I) | Inches From Inner Wall | Readings
psig | |-----|-------------------------
------------------------|------------------| | 1 | 4.5 | 0.44 | 3.0 | | 2 | 14.7 | 1.45 | 6.0 | | 3 | 29.6 | 2.92 | 8.0 | | 4 | 70.4 | 6.93 | 9.0 | | 5 | 85.3 | 8.40 | 6.0 | | 6 | 95.5 | 9.41 | 2.0 | ### Solution For n=1.28, n/(n-1)=1.28/(1.28-1)=4.57 and (n-1)/n=0.219. Assuming E=1.00, for a Pitot reading of 3.0 psig, by Eq. (3.1) the velocity is $$v = 58.58 \times 1.00 \{4.57 \times \frac{545}{0.665} [(\frac{3.0}{14.65})^{0.219} - 1]\}^{0.5}$$ v = 734 ft/sec For $^{p}i=6.0$, 8.0, 9.0, 6.0 and 2.0, the respective velocities are 1002, 1137, 1195, 1002, and 606 ft/sec. The average velocity is therefore, $$v_a = \frac{734+1002+1137+1195+1002+606}{6}$$ $v_a = 946 \text{ ft/sec}$ Now using Eq. (3.2) to find the flow rate: $$q = 0.471x9.85^2x9.46 \times \frac{14.65}{14.70} \times \frac{520}{545}$$ q = 41,000 MSCF/D In Table II maximum probable errors are assigned to the parameters of Eqs. (3.1) and (3.2) for Example 3.1. The probable error introduced into the flow rate by each of these was calculated as shown in the last column. The maximum probable error in the flow rate resulting from the worst combination of the individual errors assigned to the parameters is -28% or +11%. The calculated flowrate for Example 3.1 is 41,000 MSCF/D bracketed between the extremes of 30,000 and 45,000 MSCF/D. Table II | Parameter | Probable Error
in Parameter | Probable Error
In Flow Rate | |-----------|--------------------------------|--------------------------------| | E | -10% | -10% | | n | <u>+</u> 10% | <u>+</u> 3% | | G | <u>+</u> 10% | 5% | | T | <u>+</u> 50% | + 4% | | р | <u>+</u> 10% | <u>+</u> 10% | ## 3.6 Limitation of the Pitot Tube Application The Pitot tube application is limited to subsonic velocity. If the flow is sonic the static pressure is no longer atmospheric. The value of the static pressure is then unavailable unless the side of the pipe is tapped which is a remote possibility. The sonic velocity v_s is expressed in Ref. 3.5 by: $$v_s = 41.44 \left[\frac{nzT}{G}\right]^{0.5} \text{ ft/sec}$$ (3.3) where z is the gas deviation factor. Substituting in Eq. (3.2) $$q_s = 19.52 \frac{D^2 p_{atm}^T sc}{p_{sc}^T} \left[\frac{nzT}{G}\right]^{0.5} MSCF/day \qquad (3.4)$$ where $^{\rm q}{}_{\rm S}$ is the maximum flow rate which could be accurately determined by the Pitot tube. For the following average flow conditions and gas properties: $$p_{atm} = 14.7 \text{ psia}$$ $T_{sc} = 60^{\circ}\text{F}$ $n = 1.28 \text{ z} = 1.00$ $p_{sc} = 14.7 \text{ psia}$ $T_{sc} = 60^{\circ}\text{F}$ $G_{sc} = 0.65$ Equation (3.4) becomes: $$q_{s} = 625D^{2}$$ (3.5) Equation (3.5) is shown as a plot in Fig. 3.4. It indicates that where gas is vented to the atmosphere through 10 inch diameter casing, as in Example 3.1, Fig. 3.4. Limits of flow rate for using Pitot tubes. sonic velocity is reached at a flow rate of 62,500 MMSCF/D. As this is far above the 41,000 MSCF/D calculated in Example 3.1, the use of the Pitot formulas are valid. # SECTION 4 MEASUREMENTS IN BLEED LINES #### 4.1 Introduction Figures 4.1-4.3 are diagrams of typical choke manifold assemblies recommended by the American Petroleum Institute, Ref. 4.1, for various working pressures. In addition to two or three vent lines through which flow is controlled by manual and/or remotely operated adjustable chokes, these systems contain bleed lines through which well fluids may be allowed to flow unrestricted to the atmosphere. Bleed lines are usually straight runs of horizontal pipe, fifty to one hundred feet long and of a diameter at least that of the choke lines. The upstream end of the bleed line contains one or two plug or gate valves and a pressure gauge. The downstream end is open to the atmosphere. Where wells are vented or blowing out through bleed lines, it is possible to calculate the flow rate from pressure gauge readings and the length and diameter of the bleed line. This method of calculating flow rate can also be applied to diverter or blooie lines where the lines are equipped with pressure gauges. Fig.4.1.Typical choke manifold assembly for 10,000 and 15,000 psi rated working pressure service. Courtesy American Petroleum Institute, Ref. 4.1. Fig.. 4.2. Typical choke manifold assembly for 5000 psi rated working pressure service. Courtesy American Pet. Institute, Ref. 4.1. Fig.4.3. Typical choke manifold assembly for 2000 and 3000 psi rated working pressure service. Courtesy American Petroleum Institute, Ref. 4.1. ## 4.2 Bleed Line FLow Calculations In compressible fluid flow in pipe lines of uniform cross section, the effect of friction is to increase the velocity and to decrease the pressure of the stream. If the pressure drop is sufficiently high, which is the case in well blowouts through small diameter pipes, the exit velocity reaches sonic velocity. Although the line discharges to atmospheric pressure, the outlet pressure is significantly higher. The sonic velocity $\mathbf{v}_{_{\mathbf{S}}}$ at the pipe outlet is expressed in Ref. 4.2 as: $$v_{s} = \left[\frac{k z_{o} R T_{o}}{W}\right]^{0.5}$$ (4.1) where k = ratio of the specific heats R = universal gas constant W = gas molecular weight z_0 = gas compressibility factor at outlet temperature T_0 and pressure p_0 Expressing W in terms of gas specific gravity G, the absolute temperature T_0 in 0R , and replacing R by its numerical value, Eq.(4.1) yields for the velocity in feet per second: $$v_{s} = 41.44 \left[\frac{k z_{o} T_{o}}{G} \right]^{0.5}$$ (4.2) Hence the flow rate $\mathbf{q}_{_{\text{O}}}$ in MCF/D at outlet pressure and temperature $$q_{o} = 19.53 D^{2} \left[\frac{k z_{o} T_{o}^{0.5}}{G} \right]$$ (4.3) where D is the line inside diameter in inches. The flow rate \mathbf{q}_{O} can also be expressed using the Clinedinst equation, Ref. 4.3, as: $$q_o = 7.965 \frac{p_c D^5 T_o}{p_o GLf} (\int_0^p \frac{p_r}{z} dp_r - \int_0^p \frac{p_r}{z} dp_r)$$ (4.4) where P_O = outlet pressure, psia p_C = pseudocritical pressure, psia f = friction factor L = pipe length, ft P_i = inlet pressure, psia, recorded by the gauge. The integral function $$\begin{array}{ccc} & p_r & p_r \\ & z & dp_r \end{array}$$ has been evaluated by Nisle and Poettmann, Ref. 4.4, and are given in Table 4.1. Equations (4.3) and (4.4) contain two unknown parameters q and po. The other parameters can be measured or estimated. The pipe inside diameter D and pipe roughness e are usually known. Complete turbulence can be assumed and the friction factor f obtained from Fig. 4.4, Ref. 4.5. If the temperature T_{O} of the exiting gas stream can not be measured it must be estimated. The gas gravity G is likewise estimated or measured if a gas sample has been obtained. The equivalent length of valves, if present, is added to the axial length of the line before substituting for L in Eq. (4.4). The valves usually used are full bore gate or plug valves. The friction losses across these valves when fully open are small and can be predicted with fair accuracy. The equivalent lengths of valves are available in the literature, e.g., Ref. 4.6, or from the manufacturer. Equations (4.3) and (4.4) are used to construct a plot of flow rate versus inlet pressure, measured by the gauge, using a range of assumed values of outlet pressure Po which are unmeasured. Values of G and $^{1}\mathrm{O}$ in Eq. (4.3) must be estimated or measured. From these and the assumed values of P_{O} the gas deviation factor \mathbf{z}_{o} and the ratio of the specific heats can be determined using Figs. 4.5 (Ref. 4.7), 4.6 (Ref. 4.8) and 4.7 (Ref. 4.9). Placing these in Eq. (4.3) values of qo are obtained. These values of $^{q}_{o}$ are placed in Eq. (4.4) together with values of $^{p}_{c}$, $^{p}_{o}$, D, L, and f. The values of the second integral in Eq. (4.4) are evaluated using Table 4.1, leaving only the values of the first integral to be solved for. Entering Table 4.1 with the values of these integrals, the values of the upper limits P_{ri} are obtained, and finally the values of Pi. Fig. 4.6. Pseudoreduced pressure and temperature vs gas gravity. (Courtesy Natural Gasoline Association of America, Ref. 4.8.) GAS GRAVITY (AIR . 1) 630 CONDINATE WELL FLUIDS PSEUDO CRITICAL TEMPERATURE AND PRESSURE ALRA SOLUTION STATEMENT S Fig. 4.5. Gas compressibility factor vs reduced pressure and temperature. (After Standing and Katz, Trans. AIME, Ref. 4.7.) Fig. 4.7. Ratio of specific heats for hydrocarbons as functions of reduced pressure and temperature. (After Edmister, Ref. 4.9, Courtesy Petroleum Engineer.) As a final step, the values of \mathbf{q}_{o} are reduced to standard conditions using $$q_{sc} = q_o \frac{p_o T_{sc}}{p_{sc} T_o}$$ (4.5) Now a plot can be made of the flow rate q SC versus the inlet pressure p i as measured by the gauge on the bleed line. From this plot values for the flow rate are obtained for any value of inlet pressure. If the outlet velocity is subsonic, p O will be atmospheric, and Eq. (4.4) may be used alone to find the relation between p i and q O, and using Eq. (4.5) to reduce q O values to standard conditions. #### 4.3 Illustrative Example A gas well was vented through two fully-opened gate valves and a 50 ft, 4 inch schedule 160 bleed line. A pressure gauge upstream from the valves initially recorded 1005 psig and 886 psig six days later when it was brought under control. The method described in the previous section will be used to calculate the initial and final flow rates and the gas vented during the six day blowout. Additional data needed to perform the calculation include: Pipe absolute roughness = 0.0018 inch Line inside diameter = 3.438 inch Gas gravity = 0.60 Flow temperature = 77°F Barometric pressure = 14.62 psia Standard temperature = 60°F Standard pressure = 14.7 psia #### Solution ## (1) Adjusted bleed line length for two valves. L = 50 + 2x13x(3.438/12) L = 57.45 ft. ## (2) Gas deviation factor and ratio of specific heats. Find P_c = 672 psia and T_c =
3580R from Fig. 4.6 for G = 0.60. For T_o = 77 F, T_r = (77+460)/358 = 1.50. For P_o = 400 psia, for example, P_r = 400/672 = 0.60. From Fig. 4.5 Z_o = 0.94. From Fig. 4.7, k = 1.3. ## (3) Friction factor Relative pipe roughness = 0.0018/3.438 = 0.00052. From Fig. 4.4, for complete turbulence, f = 0.017. ## (4) Flow rate By Eq. (4.3) $$q_0 = 19.53x(3.438)^2(1.3x0.94x537/0.60)^{0.5}$$ $q_0 = 7634 \text{ ft}^3/\text{day at } 400 \text{ psi and } 77^{\circ}\text{F}$ By Eq. (4.5) $$q_{sc} = 7634 \times \frac{400}{14.7} \times \frac{520}{537}$$ = 201,000 MSCF/D = 201.0 MMSCF/D (Table 4.2 and Fig. 4.7) ## (5) Value of inlet pressure Substitute q O from (4) and solve for the first integral of Eq. (4.4). For p O = 400 psia p PO = 400/672 = 0.60. From Table 4.1 for q PO = 1.50, for p PO = 0.60 the value of the second integral of Eq. (4.4) is 0.18. Note that values in Table 4.1 are to be multiplied by 1000. Equation (4.4) becomes $$7634 = 7.965 \times \frac{672 \times 3.438^{5} \times 537}{400 \times 0.60 \times 57.45 \times 0.017} \text{ (A-0.18)}$$ where A is the value of the first integral, which from the above A = 1.040 Enter Table 4.1 with A = 1.040, for $^{T}_{ro}$ = 1.50 by interpolation find P_{ri} = 1.388. Then $$p_{i} = p_{ri}xp_{c} = 1.388x672 = 932 psia$$ (6) Repeat the above for a range of assumed values of outlet pressure ^{p}o . Table 4.2 summarizes the intermediate values and provides the data from with the flow rate at standard condition in plotted versus inlet pressure as shown in Fig. 4.8. Using Fig. 4.8 the flow rates at 1005 psig (1019.7 psia) and 886 psig (900.7 psia) are, respectively, 235 Fig. 4.8. Flow rate versus inlet pressure. Table 4.2 | | · · | | | | | | | |-----------------|---------------|-------|-------|-------|-------|-------|-------| | p _o | 100 | 200 | 300 | 400 | 500 | 600 | 700 | | p _{ro} | 0.149 | 0.298 | 0.446 | 0.595 | 0.744 | 0.893 | 1.042 | | z _o | 0.99 | 0.97 | 0.95 | 0.94 | 0.92 | 0.91 | 0.90 | | o ^p | 7835 | 7755 | 7675 | 7634 | 7552 | 7511 | 7470 | | p _{ro} | 0 | 0.04 | 0.09 | 0.18 | 0.28 | 0.42 | 0.57 | | p _r | i
0.221 | 0.477 | 0.739 | 1.040 | 1.344 | 1.690 | 2.034 | | pri | 0.664 | 0.976 | 1.178 | 1.388 | 1.602 | 1.745 | 1.905 | | pi | 446 | 650 | 792 | 932 | 1076 | 1173 | 1280 | | q sc | * 52.6 | 101.4 | 154.6 | 201.0 | 253.5 | 302.6 | 351.1 | ^{*}q_{sc} in MMSCF/D. and 195 MMSCF/D. Assuming a linear decline in flow rate for the six day period the vented gas volume is $$Q = \frac{235+195}{2} \times 6 = 1,290 \text{ MMSCF}$$ ## 4.4 Limitations and Accuracy of Bleed Line Flow Calculations The above calculations are limited to the case of a line of uniform cross section with no area restriction. This should usually be the case except when a valve is partially closed. A partially closed valve creates a throat. With a limited length of the line it is possible that the flow may be choked at the throat. The situation becomes somewhat more complex as supersonic flow might occur at the throat exit. Also with the valve partially closed it is hard to predict the friction losses across the valve, the cross section of the flow and the flow temperature and pressure at the throat. However, flow rates calculated assuming fully open valves are maximum estimates. In the case of uniform lines, the calculated flow rate accuracy is sensitive to the flow temperature, the gas gravity and the friction factor as determined by the pipe roughness. Considering the above numerical example, let the flow temperature be $177^{\circ}F$ instead of $77^{\circ}F$. The flow rate corresponding to P_{i} of 1019.7 psig would be 256 MMSCF/day instead of 235 MMSCF/day. An error of 100 degrees in determining the flow temperature will only result in an error less than 10 per cent in the flowrate. This is relatively small because only the absolute temperature raised to the power of 0.5 appears in the calculations. If we cut the pipe roughness down by half, say to 0.0009 inch, the relative roughness and friction factors are then 0.00026 and 0.0145 respectively, resulting in a flow rate of 255 MMSCF/day. A 50 per cent error in the pipe roughness will result in an error in flow rate less than 10 per cent. The gas gravity can usually be estimated within 0.1. Should the gas gravity be 0.7 instead of 0.6, a flow rate of 216 MMSCF/day is calculated. This again represents an error in flow rate less than 10 per cent. The flow temperature, gas gravity and pipe roughness can usually be estimated with accuracy at least equal to that used in the above discussion. The flow rate calculated with this method is fairly accurate. Table 4.1. Values of $\int_0^{Pr} (p_r/z) dp_r$. (After Nisle and Poettman, Ref. 4.4. Courtesy The Petroleum Engineer.) CAUTION Multiply all values given in the table by 1000, e.g., 0.00228 is actually 2.28. | | 8.8 | 00000 | 0000
00000 | 0000g | 10000 | 00003
00000
00000
00012 | 41000 | 90020
80020
72002
72002
72003 | 18008 | 00030
00044
00044 | 600K3 | 00009
000064
00076 | 29006 | 98
98
98
98
98
98
98
98
98 | 71198 | 888
825
835
835
835
835
835
835
835
835
835
83 | | 8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 %
108
2 108 | |--------------------------------|-------------------------------|-------|---------------|---------------------------|-------|---|---------------------|---|-------|--|-------------|---|-------------|--|-------|---|----------------|---
---| | | 3.80 | 00000 | 0000
0000 | 0000
00000 | 1000 | 88688
86688
86688 | 71000 | 27000
27000
27000
27000 | 1000 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 19000 | 00059
00050
00070
00078 | 25000 | 90000
800103
80111 | 81100 | 800136
80134
80143 | 10100 | 9108
8108 | 901ET | | mperature Tr | 3.60 | 00000 | 00000 | 00001 | 90000 | 00000
00000
00000
00000 | 7100 | 00017
00020
00023
00027 | 00031 | 00035
00046
00046 | 73000 | 00059
00065
00070
00078 | 00083 | 00000
00103
00111 | 81100 | 00126
00143 | 16100 | 90190
90169
90169 | 200 | | Pseudo reduced temperature Tr | 2.40 | 0000 | 00000 | 0000 | 70000 | 00000
00000
00000
00000 | 1000 | 90017
90020
90023
90027 | 00031 | 00035
00044
00048 | | 00059
00065
00071
00077 | 9000 | 00090
00104
00112 | 91100 | 00127
00138
00144 | 300 | 888
818 | 90
90
90
90
90
90
90
90
90
90
90
90
90
9 | | Paeu | 8.8 | 00000 | 0000 | 0000 | 3 | 00000
00000
00000
00000
00000 | | 00014
00017
00026
00027 | 1000 | 00038
00044
00049
0044
00049 | | 00060
00060
00071
80078 | 18000 | 00091
00098
00105
00113 | 06100 | 90128
90137
90145 | 90154 | 88
85
85 | 90191
1000
1000
1000 | | | 3.00 | 00000 | 0000 | 0000 | 70000 | 00003 | 7100 | 00014
00020
00024
00024 | 00031 | 00035
00040
00045 | | 90053
90060
90006
90072
90078 | 90008 | 00092
00099
00106
00114 | 50100 | 00130
00130
141
141 | 92100 | 00165
00175 | 90198
90209 | | | 1.90 | 0000 | 0000 | 0000 | | 00000
00001
00000 | 71000 | 90014
90017
90020
90024
90028 | 10000 | 00038
00040
00045 | 3 | 00055
000061
00073 | 98000 | 00093
00107
00115 | | 800033
140
140
140
140 | 00158 | 700
77100 | 2000
2000
2000
2000 | | | 1.80 | 5 | 800 | 0000 | | 00000
00000
00000
00000 | 200 | 90014
90020
90024
90028 | 00003 | 86688 | 3 | 00055
00061
00073
00080 | 00086 | 00093
00108
00108 | | 80037
80133
80133
80133 | 00129 | 00169
00179 | 2 2 0
2 1 0
2 1 0
3 0 | | ture T. | 1 70 | | 200 | 7
0000
0000
0000 | 7000 | 90004
90005
90007 | 00012 | 00014
00017
00021
00024 | 00033 | 800088
8004
8004
8004
8004
8004
8004
80 | 1000 | 00056
00062
00074
00080 | 00087 | 000084
00100
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000 | 3 | 00126
00134
00143 | 00162 | 00172
00182 | 00183
00800
00814 | | Passido raduoed Temperature T. | 5 | | 2000
0000 | 00001 | 2000 | 90004
90007
14 51 14 16 16 16 16 16 16 16 16 16 16 16 16 16 | 00012 | 00015
00018
00021
00024
00028 | 66000 | 00037
00046
00046 | 16000 | 00063
00063
00075
00075 | 9000 | 00000 | 3 | 00128
00137
00146 | 00166 | 00176 | 90197
90209
90219 | | Paendo rad | 5 | 8.1 | 88
88 | 00001
00001 | 7000 | 90000
900005
400005 | 00012 | 00018
00018
00021
00025 | | 00037 | 00027 | 00058
00070
00077 | 1000 | 00008
00108
00114 | O I | 00132
00141
00150 | 00170 | 00181 | 60203
60215
00227 | | | | 2 | 8
8
8 | 0000 | 0000 | 00004
00005
00007 | 00012 | 00018
00021
00023 | | 80043
80043
80043 | 00053 | 00058
00064
00071 | 6000 | 00099
00107
00118 | W124 | 00133
00143
00153 | 00153
00173 | 00184 | 00207
00219
00211 | | | | ₽. | 0000 | 0000 | 0000 | 00000 | 00017 | 00018
00018
00021 | 877 | 00033
00042
00048 | 00023 | 00059
00065
00072
00078 | 96700 | 00100
00100
00100
00100 | 00127 | 00138
00146
00156 | 00168
00177 | 00188 | 90212
90234 | | | | 2 | 0000 | 1000
0000 | 0000 | 90000
40000
70000 | 00012 |
00018
00018
00021
00028 | 200 | 00033
00048
00048 | 3000 | 00060
00066
00073 | 28000 | 00000
00103
001212 | 00130 | 00139
00149
00160 | 00171
00182 | 00193 | 0000
0000
0000
0000
0000
0000
0000
0000
0000 | | | | 8. | 0000 | 000
000
000 | 0000 | 90000
90000
90001 | 00013 | 00018
00018
00021 | 67000 | 00038
00043
00043 | 00055 | 00061
00067
00074
00081 | 68000 | 90097
9010 5
9012 3 | 00133 | 00143
00153
00164 | 00176
00188 | 00200 | 80276
80276
80276 | | | iture 1. | 1.25 | 0000 | 8000 | 00003 | 90008
90008 | 00012 | 00015
00013
00023 | 00030 | 00034
00039
00044
00030 | 9000 | 00062
00069
00076
00083 | 16000 | 00100
00109
00118
00128 | 00138 | 00149
00160
00172 | 00184
00197 | 00310 | 00239
00234
00270 | | | Pseudo reduced temperature Ir | 1.20 | 00000 | 8000 | 0000 | 00000 | 00013 | 00015
00019
00022
00026 | 00030 | 00040
00040
00045 | 00057 | 00064
00071
00078
00036 | \$6000 | 88888
2228
2228 | 00145 | 00156
00169
00181 | 00195 | 00224 | 00256
00273 | | | Paeudo red | 1.16 | 00000 | 888 | 00003 | 90000 | 000
1000
1000 | 00018
00019
00023 | 15000 | 00041
00047
00047 | 69000 | 000046
00082
00082 | 66000 | 80108
80139
14316
8116 | 00155 | 00169
00183
00188 | 00214 | 6900 | 00286
00307 | | | | 1, 10 | 00000 | 8000 | 00003 | 90000
90000
90000 | 000 | 00016
00019
00023 | 00033 | 00042
00042
00043 | 00062 | 000078
000078
00097 | 80108 | 00130
00133
00149
00161 | 82100 | 00196
00216
00237 | 00282 | 90000 | 00035
8009
8119 | | | | 1.05 | 00000 | 8000 | 0000 | 70000
90000 | 000 | 00016
00020
00024
00028 | 0003 | 90039
90045
90051 | 000 | 00055
00085
00097
00109 | 60134 | 00141
00161
00212 | 00241 | 00271
00302
00334 | 00368 | 90 | 00050 | | Preudo | reduced | ď | 8: | sis | ij | 8ंशंड | 3,2 | 383 5 | 2. | इंडंड | 38 | 1.15 | 1.23 | 885 | 8 | 383 | 22 | 98. | 3888 | | .1, page | 2. | |----------|------------| | ! | a
20 | | 4 | Н | | аþ | b 1 | | 1.45 1.60 | | | 2 | 1 4 | | referre Tr | | | | | Pseudo red | reduced Temperature T, | rature T, | | | | 1 | | | | |--
--|--|---|---|---|---|---|-------------------------|---|---|--|---|---|---|---|---|--|--|---|--| | | 1.10 1.15 1.20 | 1.15 1.20 | 1.20 | | 1.25 1.30 | 1.30 | l | 1.35 | 1.40 | 1.45 | 1.60 | 1.60 | 1.70 | 8 | 8 | 9 | 1 | remperature I | | | | Column C | 00433 00349 00308 00289
00463 00372 00328
00409 00309 00300
00409 00309 00329
00521 00419 00338 | 00349 00308 00286
00372 00328 00303
00395 00347 00320
00419 00385 00333 | 00308 00289
00328 00303
00347 00320
00348 00338 | 00286
00303
00320
00338 | 1 | 00284
00300
00316 | į. | 00272
00272
00287 | | 00244
00257
00270 | | 00231
00243
00256 | 00225
00237
00249 | 00221
00232
00244 | | 00216
00227
00238 | 00213 | 00208 | 00207 | 8.00
00208
00218 | | Column C | 00250 00469 00411 00375 00350 | 00469 00411 00375 00350 | 00411 00378 00330 | 00356 00333
00375 00350 | 00333 | | 0 0 | | | 00298 | | 00281 | 00273 | 00268 | | 00250
00261 | 00245
00257 | 00240
00251 | 00239 | 00237 | | Column C | 0041 0045 0043 0055 0055 0055 0045 0045 0045 | 00485 00433 00385 00368 00351 00358 00358 00357 00435 00435 00435 00435 00435 00435 00435 | 00433 00305 00368 00458 00458 00415 00479 00435 00405 00425 | 00385 00368
00415 00387
00436 00408
00457 00428 | 00368
00408
00428 | | 8888 | 5 | | 00327
00343
00358
00374 | | 00308
00322
00337
00357 | 00236
00313
00327
00341 | 00281
00293
00320
00333 | | 00273
00286
00298
00311
00324 | 00269
00281
00293
00305
00316 | 00263
00274
00286
00298 | 00261
00272
00294
00296 | 00259
00271
00292
00294 | | 0015 0016 <th< td=""><th>00330 00432 00444
00444 00444</th><td>00003</td><td>70027 00479 00444 00552 00552 00563 00563 00561 00568 00567 00568 00567</td><td>00479 00444
00501 00465
00523 00465
00546 00507
00570 00525</td><td>00444
00465
00507
00507</td><td></td><td>88888</td><td></td><td></td><td>00391
00408
00425
00443
00463</td><td></td><td>00366
00382
00397
00413
00429</td><td>00355
00370
00486
00400</td><td>00347
00361
00376
00391
00406</td><td></td><td>00337
00351
00365
00379</td><td>00331
00345
00372</td><td>00323
00336
00349</td><td>00321
00347
00347
00360</td><td>00018
00331
00344
00357</td></th<> | 00330 00432 00444 | 00003 | 70027 00479 00444 00552 00552 00563 00563 00561 00568 00567 00568 00567 | 00479 00444
00501 00465
00523 00465
00546 00507
00570 00525 | 00444
00465
00507
00507 | | 88888 | | | 00391
00408
00425
00443
00463 | | 00366
00382
00397
00413
00429 | 00355
00370
00486
00400 | 00347
00361
00376
00391
00406 | | 00337
00351
00365
00379 | 00331
00345
00372 | 00323
00336
00349 | 00321
00347
00347
00360 | 00018
00331
00344
00357 | | 0.0545 0.0546 0.0546 0.0546 0.0546 0.0547 0.0547 0.0547 0.0548< | 00889 00748 00655 00594 00559 005451 00559 00558 00558 00578 00568 00564 00508 00541 00568 00519 00578 00578 00588 00778 00588 00778 00588 00778 00588 00778 00588 00778 00589 00599 00599 00599 00599 00599 00599 00599 00599 | 00774 00655 00594 00359 00777 00778 00682 00543 00543 00593 00770 00643 00619 00619 00683 007764 00698 00619 00643 007764 00698 00699 00643 007764 00698 00699 00643 007764 00698 00699 00694 00643 007764 00698 00699 00699 | 00655 00594 00550 00682 00573 00773 00773 00773 00773 00774 00683 00619 00774 00764 00694 00643 00643 00643 | 00594 00550
00618 00573
00643 00596
00668 00619
00694 00643 | 00550
00573
00596
00619
00619 | 00000 | 00540
00540
00584
00584
00584 | | | | | 00446
00463
00480
00498 | 00432
00448
00481
00481 | 00437
00437
00469
00469 | | 00423
00433
00433
00434
00434 | 00401
00415
00430
00445 | 00356
00419
00413 | 00357
004037
00413 | 00394
00398
00412
00426 | | 07758 07759 07759 07759 07759 07759 07759 07759 07759 07759 07759 07759 07759 07759 07759 07759 07759 07759 07759
07759 <th< td=""><th>01086 00889 00772 00750 00667 01102 00889 00778 00821 00776 00892 01117 00892 00778 00837 00773 00777 01777 00777 00777 00777 00777 00777 00777 00777 00777 00777 00777 00777 00778 00877 00778</th><td>00989 00732 00720 00667 00667 00981 00782 00730 00717 00992 00992 00992 00992 00992 00992 00992 00992 00992 00992 00712 00992 00982 00982 00778</td><td>00792 00720 00667 00821 00746 00832 00832 00832 00748 00748 00742 00872 00872 00827 00742 00906 00827 00768</td><td>00720 00667
00746 00692
00773 00717
00800 00742
00827 00768</td><td>00667
00692
00717
00742
00768</td><td></td><td>00628
00651
00675
00698
00722</td><td></td><td></td><td></td><td></td><td>00534
00553
00572
00591
00611</td><td>00516
00533
00552
00570
00589</td><td>00502
00519
00537
00555
00555</td><td></td><td>00486
00502
00518
00536</td><td>00476
00476
00508
00525
00542</td><td>00479
00479
00479
00510</td><td>00458
00458
00568
00568</td><td>90458
90458
90488
90591</td></th<> | 01086 00889 00772 00750 00667 01102 00889 00778 00821 00776 00892 01117 00892 00778 00837 00773 00777 01777 00777 00777 00777 00777 00777 00777 00777 00777 00777 00777 00777 00778 00877 00778 | 00989 00732 00720 00667 00667 00981 00782 00730 00717 00992 00992 00992 00992 00992 00992 00992 00992 00992 00992 00712 00992 00982 00982 00778 | 00792 00720 00667 00821 00746 00832 00832 00832 00748 00748 00742 00872 00872 00827 00742 00906 00827 00768 | 00720 00667
00746 00692
00773 00717
00800 00742
00827 00768 | 00667
00692
00717
00742
00768 | | 00628
00651
00675
00698
00722 | | | | | 00534
00553
00572
00591
00611 | 00516
00533
00552
00570
00589 | 00502
00519
00537
00555
00555 | | 00486
00502
00518
00536 | 00476
00476
00508
00525
00542 | 00479
00479
00479
00510 | 00458
00458
00568
00568 | 90458
90458
90488
90591 | | 0.0523 0.0773 0.0734 0.0773 0.0773 0.0773 0.0773 0.0787 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0774 0.0773 0.0774< | 01271 01056 00535 00554
01275 01058 00598 00551 00550
01310 01120 00598 00591 00557
01345 01132 01029 00540 00574 | 01036 00935 00794
01038 00968 00832 00020
01127 00098 00911 00847
01132 01029 00940 00847
01185 01039 00969 009601 | 00938 00345 00794
00968 00883 00887
00988 00911 00847
01029 00940 00874
01059 00969 | 00855 00794
00883 00820
00911 00847
00940 00874
00969 00901 | 00794
00820
00847
00874
09901 | | 00747
00772
00797
00822
00848 | | | | | 00631
00631
00631
00692
00714 | 00608
00627
00647
00666
00687 | 00591
00609
00628
00647
00667 | | 00571
00588
00606
00624 | 00559
00576
00593
00611 | 00543
00559
00576
00593 | 00530
00570
00570
00570 | 00622
00548
00568
00583 | | 0.0942 0.0861 0.0778 0.0779< | 01415 01216 01090 00998 01450 0123 01027 01454 01234 01132 01037 01536 01536 01535 01237 01177 01177 | 01216 01090 00898 00828
01251 01122 01027 00857
01354 01135 01057 00885
01317 01185 01087 01014
01351 01217 01117 01043 | 01090 00998 00929
01122 01027 00957
01133 01057 00955
01184 01087 01014
01217 01117 01043 | 00998 00929
01027 00957
01087 00985
01087 01014
01117 01043 | 00929
00957
001014
01043 | | 00874
00901
00928
00955
00982 | | | | | 00735
00757
00779
00802
00824 | 00707
00728
00749
00770
00792 | 00687
00707
00727
00747
00768 | | 00662
00681
00700
00720
00739 | 00647
00685
00704 | 00628
00646
00664
00682 | 00052
00053
00057
00057
00057 | 00550
00650
00650
00669 | | Oliver O | 01551 01384 01249 01148 01072 01622 01622 01538 01102 01658 01456 01338 01509 01734 01509 01734 01500 01734 01500 01734 01500 01734 01500 01734 01500 01734 01500 01737 01192 | 01384 01249 01148 01072
01458 01281 01178 01102
01458 01318 01129 01132
01468 01346 01209 01102
01520 01379 01192 | 01249 01148 01072 01281 01178 01102 01313 01209 01152 01102 01152 01152 01152 01152 | 01148 01072
01178 01102
01209 01132
01240 01162
01272 01192 | 01072
01102
01132
01162 | | 01010
01038
01066
01095
01124 | | | | | 00847
00871
00895
00918
00943 | 00814
00836
00859
00882 | 00789
00811
00833
00855
00877 | | 00780
00780
00801
00821
00843 | 00742
00762
00802
00823 | 00720
00739
00758
00777 | 000711
000749
000748 | 2 90 90 90 90 90 90 90 90 90 90 90 90 90 | | 0.1222 0.1151 0.1094 0.1095 0.1016 0.0993 0.0973 0.0991 0.0993 0.0991 0.0993 0.0991 0.0993 0.0991 0.0993 0.0991 0.0993 0.0991 0.0993 0.0991 0.0993 0 | 02005 01770 01855 01412 01304 01722 01183 01211 01805 01805 01445 01305 01234 01235 | 01654 01412 01304 01223
01684 01445 01335 01254
01659 01512 01400 01315
01694 01545 01400 01315 | 0442 01304 01223 0144 01223 0144
01524 0151 01504 0151 01505 0151 0151 0151 0 | 01304 01223
01335 01254
01368 01285
01400 01317
01432 01348 | 01223
01254
01285
01317
01348 | | 01163
01183
01212
01242
01272 | | | | | 00967
00992
01017
01043
01068 | 00929
00952
00976
01001
01025 | 00899
00922
00945
00968
00992 | | 00864
00886
00997
00930
00952 | 00844
00865
00886
00907
00929 | 00817
00838
00878
00878
00878 | 6 00 00 00 00 00 00 00 00 00 00 00 00 00 | 97/09
96709
9623
90658 | | 01335 01291 01255 01295 01138 01131 01032 01030 00034 01035 01350 01255 01255 01155 | 0.950 0.1742 0.10519 0.1458 0.1330 0.1500 0.1501 0.1745 0.1230 0.1645 0. | 0174 0181 01468 01890 01744 01818 01818 01818 01818 01818 01818 01818 01814 01818 01 | 01579 01465 01380 01613 01442 01613 01442 01412 01461 01477 01682 01564 01477 01716 01598 01510 | 01465 01380
01498 01412
01531 01445
01564 01477
01598 01510 | 01380
01412
01477
01510 | | 01303
01334
01365
01396
01427 | | 01246
01276
01306
01336
01357 | | | 01094
01120
01147
01173
01200 | 01050
01075
01100
01126
01152 | 01016
01040
01084
01113 | | 00975
00998
01021
01044 | 00951
00973
00995
01018 | 00941
00941
00983 | 00903
00929
00921
00921 | 000000 | | 01490 01435 01388 01312 01288 01235 01240 01450 01450 01450 01451 01451 01384 01312 01284 01245 01245 01450 01451 | 02132 01906 01751 01631 01543 022168 01924 01754 01699 01809 01699 01609 02242 02014 01836 01733 01643 02279 02050 01891 01768 01677 | 01906 01751 01631 01543 01942 01942 01758 01080 01831 01699 01699 01699 02004 01846 01733 01643 01609 | 01751 01631 01543 01786 01878 01878 01857 01857 01857 01857 01857 01857 01857 01857 01857 01857 01857 01857 01857 | 01631 01543
01665 01576
01699 01609
01733 01643
01766 01677 | 01543
01576
01609
01643
01673 | | 01459
01491
01523
01555
01588 | | 01397
01428
01480
01491
01523 | | | 01228
01255
01283
01311
01339 | 01178
01204
01231
01258
01285 |
01139
01164
01189
01215
01241 | | 01092
01116
01140
01165 | 01064
01088
01111
01135 | 01029
01051
01074 | 2000 000 000 000 000 000 000 000 000 00 | 01005
01027
01049
01073 | | 01500 01813 01463 01403 01371 01344 01308 01203 01271 01244 01645 01203 01271 01244 01208 01203 01271 01245 01203 01271 01245 01203 01271 01245 01271 01245 01271 01245 01271 01245 01271 01245 01271 01245 01271 01245 01271 01245 01271 01245 01271 01245 01245 01271 01245 | 0231 02008 01952 02505 01867 02535 02538 01967 0 | 02086 01926 01802 01710
02122 01905 01872 01745
02159 01905 01872 01779
02193 02003 01907 01813
02222 02009 01942 01848 | 01926 01802 01710
01962 01837 01745
01908 01877 01745
02033 01907 01813
02069 01942 01848 | 01802 01710
01837 01745
01872 01779
01907 01813 | 01710
01745
01779
01813
01846 | | 01621
01654
01687
01720
01754 | | 01555
01587
01619
01652
01685 | | | 01368
01396
01425
01454
01484 | 01312
01340
01368
01396
01424 | 01268
01294
01321
01348
01378 | | 01215
01240
01266
01292
01318 | 01183
01208
01232
01257
01257 | 01143
01167
011215 | 3 22:28
3 22:28
3 23:28 | 9010
9110
9110
9110
9110 | | | 2251 0214 02141 02150 02577 02584 02161 02587 02588 02114 02587 02588 02114 02581 02581 02581 02581 02581 02581 02581 02581 02581 02581 02581 | 02208 02105 01977 02048 02278 02178 02048 02178 02018 02178 02018 02120 | 021141 02012
03174 02012
03174 02044
02214 02084
02314 02130 | 01977
02012
02048
02130 | | 01883 01787 01989 01821 01821 01825 01825 01825 01825 01825 01825 01824 | 01787
01821
01855
01890
01890 | | 01717
01751
01751
01817
01817
01861
0 | 01647
01679
01711
01743 | 01590
01621
01621
01632
01684
01716 | 01513
01543
01573
01604
01634 | 01453
01481
01510
01540 | 01403
01430
01486
01486
01616 | | 01344
01370
01370
01424
01424 | 01308
01334
01334
01356
01368
01412 | 01263
01288
01313
01313 | 0124 | | | - | |----| | c | | a) | | a | | Д | | • | | ⊢ | | 4 | | a) | | Н | | P, | | ಹ | | Ę | | | 3.00 | 01357
01352
01408
01433 | 01485
01512
01538
01565
01592 | 01619
01646
01674
01702
01730 | 01758
01736
01815
01814
01814 | 01902
01931
01961
01991
02021 | 02051
02082
021*7
02144
02144 | 0229
0229
0229
0220
0220
0220 | 02365
02398
02431
02464
02464 | 02530
02563
02597
02631
02663 | 02699
92713
02768
02901
02818 | 02873
02908
02944
02979
03015 | 03051
03088
03148
03161 | 02233
03273
04300
04347 | |---------------------|-------|---|---|---|--|---|---|--|---|---
--|---|--|---| | | 1 1 | 01371
01396
01422
01447
01474 | 01500
01526
01553
01580
01607 | 01634
01652
01590
01718
01746 | 01774
01803
01832
01861
01890 | 01919
01949
01979
02009 | 02069
02100
02131
02162
02193 | 02224
02256
0228
02320
02320 | 0239
0245
0243
0258 | 02549
02533
02617
02631
02631 | 02719
02734
02789
02829 | 02894
02929
02965
03001
03037 | 03073
03110
03146
03183
03220 | 03257
03294
03339
03339 | | superature Tr | 3.60 | 01388
01414
01460
01466
01492 | 01519
01546
01573
01600 | 01636
01683
01711
01739
01767 | 01796
01925
01854
01883
019 12 | 01942
01972
02002
02032
02063 | 02094
02124
02156
02187
02218 | 02250
02282
02314
02346
02379 | 02411
02444
02477
02510
02544 | 02577
02611
02645
02679
02714 | 02748
02783
02853
02883 | 02924
02960
02995
03031
03068 | 03104
03141
03177
03214
03252 | 03289
03328
03328
03324
03403 | | Passdo reduced to | 2.40 | 01410
01436
01462
01489
01515 | 01542
01569
01597
01624
01652 | 01680
01708
01737
01766
01794 | 01823
01852
01882
01911
01941 | 01971
02001
02032
02062
02093 | 02124
02155
02187
02218
02260 | 02282
02314
02347
02379
02412 | 02445
02478
02512
02545 | 02613
02647
02682
02716
02751 | 02786
02821
02856
02891
02927 | 02963
02999
03035
03071
03108 | G\$145
G\$182
G\$219
G\$256
G\$293 | 68331
68369
68445 | | Ž | 2.20 | 01438
01465
01492
01519
01546 | 01574
01602
01630
01658
01686 | 01715
01744
01773
01802
01831 | 01861
01891
01921
01951
01982 | 02012
02043
02074
02106
02137 | 02169
02201
02233
02265
02297 | 02230
02363
02396
02429
02429 | 02496
02530
02584
02598
02632 | 02667
02701
02736
02771
02807 | 02942
02878
02913
02949
0298 5 | 03022
03058
03095
03132
03169 | 03206
03243
03281
03318
0335 | 03394 | | ; | 2.00 | 01478
01506
01534
01562
01590 | 01618
01647
01705
01734 | 01764
01794
01824
01854
01884 | 01914
01945
01976
02007
02038 | 02070
02102
02134
02166
02198 | 02230
02263
02296
02329
02362 | 02395
02429
02463
02497
02531 | 02565
02600
02635
02609
02705 | 02740
02775
02811
02847
02883 | 02919
02955
02992
03065 | 03102
03139
03176
03214
03251 | 03327
03327
03365
03404
03442 | 03481
03520
03569
08569 | | | 1.90 | 01508
01536
01565
01593
01622 | 01651
01680
01710
01740
01770 | 01800
01830
01860
01891
01922 | 01953
01954
02016
02048
02080 | 02112
02144
02176
02209
02242 | 02275
02308
02342
02375 | 02443
02477
02512
02546
02581 | 02616
02651
02686
02722
02757 | 02793
02829
02865
02901
02938 | 02974
03011
03048
03085
03122 | 03160
03198
03273
03311 | 03350
03388
03467
03504 | 03543
03582
03623
04661 | | | 1.80 | 01543
01572
01601
01630
01660 | 01690
01720
01750
01780
01810 | 01841
01872
01903
01935
01956 | 01998
02030
02062
02095
02127 | 02160
02193
02226
02259 | 02326
0236
02429
02429 | 02498
02532
02567
02603
02638 | 02673
02709
02745
02781
02817 | 02853
02890
02956
02963
03000 | 03037
03075
03112
03150 | 03226
03264
03340
03379 | 03418
03457
03496
03535
03574 | 03614
03653
04693 | | bure T, | 1.70 | 01599
01629
01659
01689
01720 | 01750
01781
01812
01844
01875 | 01907
01939
01971
02004
02036 | 02069
02102
02135
02168
02202 | 02235
02269
02303
02338 | 02407
02441
02476
02511
02547 | 02582
02618
02654
02690
02726 | 02762
02799
02835
02872
02909 | 02946
02983
03021
03058
03096 | 03134
03172
03210
03248
03287 | 03326
03364
03462
03442
03482 | 03521
03560
03640
03640 | 03720
03760
04800
04811 | | reduced Temperature | 1.60 | 01665
01696
01727
01758
01790 | 01821
01853
01886
01918
01951 | 01983
02016
02049
02083
02116 | 02150
02184
02218
02252
02286 | 02321
02356
02391
02426
02461 | 02497
02532
02568
02604
02640 | 02677
02713
02750
02786
02823 | 02861
02898
02935
02973
03010 | 03048
03085
03124
03163
03201 | 03240
03278
03317
03356
03395 | 03435
03474
03533
03533
08593 | 03633
03673
03754
03754 | 03835
03875
03916
03957 | | Preudo redu | 1.50 | 01748
01780
01813
01845
01878 | 01911
01944
01978
02011
02045 | 02079
02113
02147
02182
02216 | 02251
02286
02321
02357
02392 | 02428
02464
02500
02536
02572 | 02609
02645
02682
02719
02756 | 02793
02831
02868
02906
02944 | 02982
03020
03058
03097
03135 | 03174
03212
03251
03290
03329 | 03368
03408
03447
03487
03527 | 03567
03607
03647
03687
03727 | 03768
03808
03849
03889 | 03971
04012
04064
04086 | | | 1.45 | 01809
01842
01875
01908
01942 | 01976
02010
02044
02078
02113 | 02147
02182
02217
02253
02288 | 02323
02359
02431
02457 | 02503
02540
02577
02613
02650 | 02687
02724
02762
02799
02837 | 02875
02912
02950
02988
03027 | 03065
03104
03142
03181
03220 | 03259
03337
0337
03416 | 03495
03495
08535
08575
08615 | 03695
03736
03776
03817 | 03857
03898
03939
04021 | 04062
04103
04103
04103 | | | 1.40 | 01886
01919
01953
01988
02022 | 02067
02092
02127
02162
02168 | 02233
02269
02305
02341
02377 | 02413
02450
02486
02523
02500 | 02597
02634
02671
02708
02746 | 02783
02821
02859
02897
02993 | 02973
03012
03050
03089
03127 | 03166
03205
03244
05283
03322 | 03362
03401
03441
03481
03520 | 03560
03600
03640
03681
03721 | 03761
03802
03843
03883
03924 | 03964
04005
04087
04129 | 04170
04211
04253
04294 | | | 1.36 | 01959
01994
02029
02064
02099 |
02135
02170
02206
02242
02278 | 02314
02350
02387
02423
02460 | 02497
02534
02571
02608
02646 | 02683
02721
02758
02796
02834 | 02872
02910
02948
02987
03025 | 03064
03102
03141
03180
03219 | 03258
03297
03336
03376
03415 | 03455
03495
03534
03574
03614 | 03695
03695
03735
03775
03816 | 03856
03897
03937
04019 | 04060
04101
04142
04184
0425 | 04266
04308
04308
04391 | | | 1.30 | 02059
02035
02130
02166
02203 | 02239
02275
02312
02348
02385 | 02422
02459
02496
02533
02570 | 02608
02645
02683
02721
02858 | 02796
02834
02872
02911
02949 | 02987
03026
03064
03103
03142 | 03181
03220
03259
03298
03337 | 03377
03416
03456
03495
03535 | 03575
03615
03655
03695
03735 | 03775
03815
08856
03896
03937 | 03977
04018
04059
04100
04140 | 04181
04222
04263
04304
04346 | 04387
04428
04470
04511 | | der Tr | 1.25 | 02156
02192
02228
02264
02301 | 02338
02374
02411
02448
02485 | 02522
02560
02597
02635
02672 | 62710
02748
02786
02824
02862 | 02900
02938
02977
03015
03053 | 03092
03131
03170
03208
03247 | 03286
0325
03404
03404 | 03482
03522
03551
03601
03601 | 88.80
88720
88780
8880
8840 | 03920
03920
04000
04041 | 94081
94122
94162
94203 | 04285
04326
04367
04408 | 04490
04531
04573 | | 1 T | 1.80 | 02287
02324
02361
02398
02435 | 02472
02509
02546
02584
02621 | 02659
02697
02734
02772
02810 | 02848
02836
02924
02963
03001 | 03039
03078
03116
03155
03193 | 03232
03271
03348
03348 | 03426
03465
03504
03543
03543 | 02622
02661
03701
03740
03780 | 03819
03859
03938
03938 | 04018
04058
04138
04178 | 04219
04259
04290
04340
04380 | 04421
04461
04502
04542
04583 | 94624
9464
94765 | | Therefore red | 1.15 | 02453
02490
02527
02565 | 02639
02677
02715
02752
02790 | 02828
02866
02904
02942
02980 | 02018
03056
03094
03171 | 03210
03248
03287
03384
03384 | 03403
03441
03480
03519
03558 | 03597
03636
03675
03714
03763 | 03793
03871
03971
03911 | 03989
04029
04108
04108 | 04188
04227
04267
04307
04347 | 04387
04427
04467
04507
04548 | 04588
04628
04668
04708 | 04789
04830
04870 | | | 1.10 | 02688
02725
02763
02800
02838 | 02878
02913
02931
02989
03027 | 03063
03141
03179
03179 | 03256
0332
03371
03409 | 03447
03486
03583
03563
03601 | 03640
03679
03717
03756 | 03873
03912
03951
03951
03950 | 04029
04068
04107
04146 | 04224
04264
04303
04342
04352 | 04421
04461
04500
04540
04579 | 04659
04659
04638
04738 | 04818
04857
04837
04937 | 05017
05057
05097
05137 | | | 1.08 | 03024
03061
03099
03137 | 03213
03250
03284
03126
03364 | 03402
03478
03516
03516 | G3592
G3630
G3668
G3706
G3706 | 047.63
63.8521
63.856
63.858
63.858 | 03974
04013
04051
04128 | 04167
04205
04283
04283 | 04360
0433
04437
04515 | 04554
04533
04671
04671 | 04749
04788
04826
04865
04904 | 04944
04983
05022
05061
05101 | 05140
05179
05219
05258
05298 | 05337
05377
06416
06456 | | Pseude | P. P. | 825238 | 38852 | 8888888 | 8090
8090
8090
8090
8090
8090
8090
8090 | ******
88343 | 38855 | 88888
88888 | 82288 | 55.7.7.
54.7.7.88
54.6.88 | 25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 7.7.7.28
2.95
8.1.98 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 8 8 8
6 5 6 5
7 5 6 5 | | | | | | | | | | | | | | | | | Table 4.1, page4. | | 8 | 68422
03480
03499
03537 | 65614
65653
63692
63732
63771 | 03850
03850
03890
03930
03971 | 04011
04052
04033
04133
04175 | 04216
04257
0429
04341 | 94455
94567
94559
94553 | 04724
04724
04767 | 94854
94858
94942
96030 | 04673
05119
05209
06239 | 06239
06334
06435
06435 | 06573
06573
06619
06666 | 067.89
03833
05800
06800 | 00042
00042
00099
00137 | |------------------------|---------------|---|---|---|---|---|---|--|---|---|---|---|---|--| | | 2 6 | 03445
03522
03522
03560
03599 | 03635
03677
03716
03755 | 03875
03915
03955
03955 | 04033
04138
04138 | 04283
04324
04324
04405 | 04450
04493
04533
04578
04621 | 9464
94759
94759
1889 | 04881
04925
04969
05013
08057 | 05102
05146
05191
05236
05236 | 05325
05417
05463
05509 | 05555
05501
05647
05693
05740 | 08756
08533
08530
08927
08924 | 060022
060069
06117
061168 | | | temperature 2 | 03478
03516
03555
03594
03633 | 03672
03711
03750
03750
03830 | 03950
03950
03950
03990
04031 | 04071
04112
04133
04135
04135 | 04277
04319
04361
04403 | 04487
04572
04572
04615
04615 | 04701
04744
04787
04831 | 04918
04962
05006
05051
05051 | 05140
05184
05229
05274
05319 | 05364
05410
05455
05501
05547 | 05593
05639
05685
06731
06778 | 05825
05871
05918
05965
06012 | 06060
06107
06184
06202 | | | Peudo reduced | 03522
03560
03599
03638
03638 | 03717
03756
93796
03836
03876 | 03916
03956
03996
04037
04078 | 04119
04201
04201
04242
04243 | 04325
04367
04409
04451
04451 | 04536
04578
04621
04664
04707 | 04750
04793
04837
04880
04924 | 04968
05012
05056
05100
05145 | 05189
05234
05279
05324
05369 | 05414
05459
05505
06551
06551 | 05643
05689
05735
05781
05781 | 05874
05921
05968
06015
06062 | 06109
06157
96254
96332
96332 | | • | Č S | 03587
03626
03665
03705
03744 |
03824
03864
03904
03944 | 03985
04025
04066
04107
04148 | 04189
04230
04272
04314
04355 | 04397
04433
04481
04524
04566 | 04609
04652
04694
04737
04780 | 04824
04867
04911
04954
04998 | 05042
05086
05131
05175
05219 | 05264
05309
95354
06399
05444 | 05489
05535
05580
05626
05672 | 05718
05764
05810
05857
05903 | 05950
05996
06093
06090 | 06185
06232
06279
06327
9637 | | | 9 00 | 03677
03716
03756
03796
03836 | 03876
03917
03957
03998
04039 | 04079
04121
04162
04203
04245 | 04286
04328
04370
04412
04454 | 04497
04539
04582
04685 | 04711
04754
04797
04841 | 04928
04972
05016
05060
05104 | 95148
05193
05237
05282
05327 | 05372
05417
05462
05507
05553 | 05598
05644
05690
05735
05735 | 05827
05873
05920
05966
06013 | 06059
08106
06153
06200
06247 | 06294
06341
06341
06438 | | | 9 | 03741
03780
03821
03861
03901 | 03942
03982
04023
04064
04105 | 04146
04188
04229
04271
04313 | 04355
04397
04439
04481
04524 | 04568
04609
04652
04695
04738 | 04781
04824
04868
04912
04955 | 04999
05043
05087
05131
05176 | 05220
05265
05310
05354
05399 | 05444
05490
05535
05580
05628 | 05671
05717
05763
05809
05855 | 05901
05947
06993
06040
06086 | 06133
06180
06227
06274
06321 | 96368
96415
96463
96463 | | | 92 | 03854
03854
03894
03935
03976 | 04058
04058
04099
04140 | 04223
04265
04307
04348
04391 | 04433
04475
04518
04560
04603 | 04646
04689
04732
04775 | 04862
04905
04949
04993
05037 | 05081
05125
05189
05214
05258 | 06303
06347
06332
06437
06482 | 05527
05573
05618
05664
05709 | 05755
05801
05847
05893
05939 | 05985
06031
06078
06124
06171 | 06217
06264
06311
06358
06405 | 06452
06499
06547
06564 | | | rature 1r | 03952
03953
04004
04045
04086 | 04128
04169
04211
04252
04294 | 04338
04378
04421
04463
04505 | 04548
04591
04633
04676
04719 | 04762
04806
04849
04893
04893 | 04980
05024
05068
05112
05156 | 05200
05244
05289
05333
05378 | 05422
05467
05512
05557
05602 | 05647
05693
05738
05784
06829 | 05875
05921
05967
06013
06059 | 06105
06151
06197
06244
06230 | 06337
06383
06430
06477
06524 | 06571
06618
06668
06712
66740 | | | reduced rempe | 04039
04081
04122
04163
04205 | 04247
04289
04331
04373
04415 | 04457
04500
04542
04585
04628 | 04670
04713
04756
04799
04843 | 04886
04929
04973
05016
05060 | 05104
05148
05192
05236
05230 | 05324
05389
05413
05457
05502 | 05547
05592
05636
05681
05727 | 05772
05817
05862
05908
05953 | 05999
06045
06090
06136
06138 | 06228
06274
06320
06386
06413 | 06459
06505
06559
06599
06645 | 06692
06739
06788
06632
06632 | | - | rseudo re | 04178
04219
04261
04303
04345 | 04387
04429
04471
04513 | 04598
04641
04683
04726
04769 | 04812
04855
04898
04941
04984 | 05028
05071
05115
05158 | 05246
05290
05334
05378
05422 | 05466
05510
05555
05599
05644 | 05688
05733
05778
05823
05868 | 05912
05957
06003
06048
06093 | 06138
04184
06 29
06320 | 06366
06412
06458
06503
06549 | 06595
06642
06688
06734
06734 | 06827
06813
06919
06919
07013 | | | 1.45 | 04269
04310
04352
04394
04436 | 04478
04520
04562
04604
04647 | 04689
04732
04774
04817
04860 | 04903
04946
04989
05032
05075 | 05118
05162
05205
05249
05292 | 05336
05380
05424
05467
05511 | 05556
05600
05644
05688
05733 | 05777
05821
05866
05911
05955 | 06000
06045
06090
06135
06180 | 06225
06270
06316
06361
06406 | 06452
06497
06543
06589
06634 | 06680
06726
06772
06818 | 06910
06956
07002
07048
07048 | | | 9 | 04378
04419
04503
04503
04545 | 04587
04629
04671
04714
04758 | 04798
04841
04884
04926
04969 | 05012
05055
05098
05141
05184 | 05227
05270
05314
05357
05400 | 05444
05488
05531
05575
05619 | 05882
05706
05750
05750
06839 | 06883
05927
05971
06016
06060 | 06105
06149
06194
06239
06283 | 06328
06373
06418
06463
06508 | 06553
06599
06644
06689
06735 | 06780
06826
06871
06917
06962 | 07008
07054
07100
07146 | | | 1.35 | 04474
04516
04558
04600
04642 | 04684
04726
04768
04810
04852 | 04895
04937
04980
05023
05065 | 05108
05151
05194
05237
05280 | 05323
05366
05409
05452
05495 | 05539
05582
05626
05689
05713 | 05756
05800
05844
05888
05932 | 05976
06020
06064
06108
06152 | 06196
06240
06285
06329
06374 | 06418
06463
06507
06552
06597 | 06642
06686
06731
06776
06821 | 06866
06911
06956
07002
07047 | 07092
07137
07180
67226 | | | 1.30 | 04594
04636
04678
04719
04761 | 04803
04845
04887
04929
04972 | 05014
05056
05099
05141
05184 | 05226
05269
05311
05354
05397 | 05440
05483
05526
05569
05612 | 05655
05698
05741
05784
05828 | 05871
05915
05958
06002
06045 | 06089
06133
06176
06220
06264 | 06308
06352
06396
06440
06484 | 06528
06572
06616
06661
06705 | 06749
06838
06838
06882
06927 | 06972
07016
07061
07106
07150 | 07195
07240
07286
67330
67374 | | 1 | 1.23 | 04697
04739
04822
04863 | 04905
04947
04989
05030
05072 | 05114
05156
05198
05241
05283 | 05325
05367
05410
05452
05494 | 05537
05529
05622
05665
05707 | 05750
05793
05835
05878
05878 | 0.5964
06007
06050
06093
06136 | 06179
06223
06266
06309
06353 | 06396
06440
06483
06527
06570 | 06614
06658
06701
06745
06789 | 06833
06877
06921
04965
07009 | 07053
07097
07141
07185
07229 | 07273
07317
07362
07458 | | Pando adiesal temperat | 1.8 | 04828
04869
04910
04952 | 05034
05076
05117
05159
05200 | 05242
05283
05325
05357
05408 | 05450
05492
05534
05578
05618 | 05660
05702
05744
05786
05829 | 05871
05913
05958
05998
06040 | 06083
06126
06168
06211
06233 | 06296
06339
06382
06425
06467 | 06510
06553
06553
06639
06682 | 06726
06769
06812
06835
06898 | 06942
06985
07028
07072
07115 | 07158
07202
07245
07289
07332 | 07376
07420
07462
07507 | | A. | 1.15 | 04992
05032
05073
05114
06156 | 05195
05236
05277
05318
05359 | 05400
05441
05483
05524
05565 | 05606
05648
05689
05731
05772 | 05814
05855
05897
05938
05980 | 06022
06063
06105
06147
06189 | 06231
06273
06315
06357
06399 | 06441
06453
06525
06567
06610 | 06694
06694
06779
0621 | 06864
06906
06949
06991
07034 | 07077
07119
07162
0720 5
07247 | 07290
07333
07378
07419
07462 | 07505
07548
07591
07654
07677 | | | 1.10 | 1 | | | | | | | 06648
06899
06731
06772
06814 | | | | | | | | 8.1 | | | | | | | | 06984
06984
07025
07065
07106 | | | | | 07968
08009
08051
08092 | | Perudo | Post of | ************************************** | ************************************** | 90000
85588 | ************************************** | 99999
39855 | ************************************** | 800000
800000 | 55555
88358 | 88855
8885
8885
8885 | 8 8 9 9 11
8 8 8 8 8 | 111111
80181 | 22222
22223 | 28882 | | • | |---------------| | S | | | | 90
80 | | | | Q | | þ | | | | • | | \vdash | | • | | 4 | | | | a | | $\overline{}$ | | Ъ | | æ | | H | | | 8.8 | 06233
06281
06330
06378
06427 | 06475
06524
06573
06671 | 06721
06770
06820
06870
06870 | 04969
07020
07070
07120
07171 | 07222
07272
07323
07426 | 97477
97528
97580
97633 | 07,734
07788
07840
07945 | 97997
98050
06103
96156
96209 | 9636
0636
0636
0443
7774 | 06531
06535
08639
06593
06747 | 98802
08856
08911
08968 | 99078
98131
99185
99242
99297 | 99253
99459
99458
98531 | |------------------------------|-------|---|---|---|---|---|---|---|---|---|---|---|---|---| | | 8.8 | 06260
06356
06453
06453 | 06502
06551
06600
06649
06698 | 06747
06797
06846
06896
06946 | 06996
07046
07096
07147
07197 |
07248
07299
07349
07400
07452 | 07503
07554
07606
07658
07709 | 07761
07813
07866
07918
07970 | 08023
08075
08128
08181
08234 | 08287
08341
08394
08447
08501 | 08585
08609
08663
08717
08771 | 08826
08880
08935
08990
09044 | 09099
09135
09210
09265
09321 | 00376
00432
00432
00544
00664 | | temperature Tr | 3.60 | 06298
06346
06394
06442
06491 | 96540
06588
06637
06686
06735 | 06785
06834
06853
06933
06983 | 07033
07063
07133
07183
07234 | 07284
07335
07386
07437
07488 | 07539
07590
07642
07693 | 07797
07849
07901
07953
08006 | 08058
08111
08163
08216
08216 | 08322
08375
08429
08482
08536 | 08589
08643
08697
08751
08805 | 08860
08914
08969
09023
09078 | 09133
09188
09243
09298
09353 | 00400
00464
00630
00630 | | Pseudo reduced ter | 2.40 | 06347
06395
06443
06492
06540 | 06589
06637
06686
06735
06784 | 06833
06883
06932
06981
07031 | 07081
07131
07181
07231
07281 | 07332
07382
07433
07484
07535 | 07586
07637
07688
07739
07791 | 07842
07894
07946
07998
08050 | 08102
08155
08207
08260
08312 | 06365
08418
08471
08578
08578 | 08631
08685
08738
08792
08846 | 08900
08954
09008
09063 | 00172
00226
09281
09336
09391 | 09446
99501
9957
99513
99613 | | Peepe | 1.20 | 06422
06470
06518
06566
06615 | 06663
06712
06760
06809
06858 | 06907
06956
07005
07055
07104 | 07154
07204
07253
07303
07353 | 07403
07454
07504
07555
07605 | 07656
07707
07758
07809
07860 | 07911
07963
08014
08068
08117 | 08168
08221
08273
08326
08378 | 08430
08483
08535
08588
08641 | 08694
08747
08800
08853
08907 | 08960
09014
09068
09121
09176 | 09229
09283
09338
09392
09446 | 09501
09586
00410
09665
68730 | | | 8.8 | 06532
06579
06627
06675
06723 | 06772
06820
06868
06917
06966 | 07015
07063
07112
07162
07211 | 07260
07309
07359
07409
07458 | 07508
07558
07608
07658
07708 | 07758
07809
07859
07910
07961 | 08011
08062
08113
08164
08215 | 08267
08318
08369
08421
08472 | 08524
08576
08628
08680
08732 | 08784
08836
08889
08941
08994 | 09047
09099
09152
09205
09258 | 09311
09364
09418 -
09471
09524 | 00578
09632
09635
09739
09739 | | | 1.90 | 06603
06653
06701
06749 | 06845
06893
06942
06990
07038 | 07087
07136
07185
07233
07282 | 07332
07381
07430
07479
07529 | 07579
07628
07678
07728
07778 | 07828
07878
07928
07978
08029 | 08079
08130
08130
08231
08282 | 08333
08384
08435
08486
08537 | 08588
08640
08691
08743
08795 | 08848
08898
08950
09002
09054 | 09108
09158
09211
09263
09316 | 09368
09421
09473
09526
09579 | 09632
09724
09724
09761 | | | 1.80 | 06689
06737
06785
06832
06832 | 06928
06976
07025
07073
07121 | 07170
07218
07267
07316
07364 | 07413
07462
07511
07560 | 07659
07708
07758
07807
07857 | 07906
07956
08006
08056
08106 | 08136
08206
08257
08307
08357 | 08408
08458
08509
08560 | 08661
08712
08763
08814
08866 | 08917
08968
09019
09071
09122 | 09174
09226
09277
09329
09381 | 09433
09485
09537
09589
09641 | 00004
00746
00851
00005 | | ure Tr | 1.70 | 06864
06864
06902
06950
06997 | 07045
07093
07141
07189
07237 | 07285
07333
07382
07430
07479 | 07527
07576
07624
07673
07722 | 07771
07820
07889
07918
07967 | 08017
08086
08116
08155
08215 | 08264
08314
08364
08414
08464 | 08514
08564
08614
08664
08715 | 08765
08815
08865
08916
08967 | 09018
09069
09119
09170
09221 | 09272
09324
09375
09426
09477 | 09529
09580
09632
09633
09735 | 78787
80808
80808
60044
14008 | | Seudo reduced Temperature Tr | 1.60 | 06928
06974
07021
07068
07115 | 07163
07210
07258
07305
07353 | 07401
07449
07497
07544
07592 | 07641
07689
07737
07785
07833 | 07882
07930
07979
08027
08078 | 08125
08173
08222
08271
08271 | 08369
08418
08467
08516
08566 | 08615
08664
08714
08763 | 08862
08912
08962
09011
09061 | 09111
09161
09211
09261 | 09362
09412
09462
09512
09563 | 09613
09684
09714
09765
09816 | 00806
09917
09968
10019
10078 | | Pseudo redu | 1.50 | 07059
07106
07153
07200
07246 | 07293
07340
07387
07435
07482 | 67529
07576
07624
07671
07719 | 07766
07814
07862
07909
07957 | 08005
08053
08101
08149
08197 | 08245
08293
08341
08390 | 08486
08535
08583
08632
08631 | 08729
08778
08827
08876
08925 | 08974
09023
09072
09121
09170 | 09219
09268
09318
09367
09417 | 09466
09516
09565
09615
0964 | 09714
09764
09814
09864
09914 | 00964
10014
10014
10114
10114 | | | 1.45 | 07141
07188
07234
07281
07327 | 07374
07421
07468
07515
07561 | 07608
07655
07703
07750 | 07844
07891
07939
07986 | 08081
08129
08176
08224
08272 | 08319
08367
08415
08463
08511 | 08559
08657
08555
08704 | 08800
08848
08897
08945 | 09042
09091
09140
09188 | 09286
09335
09384
09432 | 09530
09580
09629
09678 | 09776
09825
09875
08924
09973 | 10023
10072
10172
10171 | | | 1.40 | 07238
07284
07330
07376
07422 | 07469
07515
07561
07608
07654 | 07701
07748
07794
07841
07888 | 07935
07981
08028
08075
08122 | 08169
08217
08264
08311
08358 | 08406
08453
08500
08548
08595 | 08643
08690
08738
08786 | 08981
08929
08977
09025
09073 | 09121
09169
09217
09265 | 09381
09409
09458
09506
09554 | 09603
09651
09700
09748 | 09846
09894
09943
09992
10041 | 10089
10138
10187
10187
10284 | | | 1.35 | 07319
07365
07410
07456
07502 | 07548
07593
07639
07685
07731 | 07777
07823
07869
07916
07962 | 08008
08054
08101
08147 | 08240
08287
08333
08380
08427 | 08473
08520
08567
08614
08660 | 08707
08754
08801
08848
08895 | 08942
08990
09037
09084
09131 | 09179
09226
09273
09321
09368 | 09416
09463
09511
09558
09606 | 09654
09701
09749
09797 | 09892
09894
09988
10036
10084 | 10132
10180
10228
10278
10274 | | | 1.30 | 07420
07465
07510
07555 | 07646
07691
07736
07781
07781 | 07872
07918
07963
08009
08054 | 08100
08145
08191
08237
08282 | 06328
08374
08420
08466
08512 | 08557
08603
08649
08696
08742 | 08788
08834
08830
08926
08973 | 09019
09065
09112
09158
09204 | 09251
09297
09344
09391
09437 | 09484
09530
09577
09624
09671 | 09717
09764
09811
09858
09905 | 09952
09999
10046
10093 | 10187
10234
10381
10328
10378 | | rature Tr | 1.35 | 07495
07539
07584
07628
07628 | 07718
07762
07807
07852
07858 | 07941
07986
08031
08076
08121 | 08166
08211
08256
08301
08346 | 08391
08436
08481
08526
08571 | 08617
08662
08707
08733
08753 | 08843
08834
08934
09980 | 09071
09116
09162
09208
09253 | 09299
09345
09390
09436
09482 | 09528
09574
09620
09668
09712 | 09758
09804
09850
09896
09842 | 09988
10034
10080
10126
10173 | 10219
10256
10358
10358
10401 | | Parado reduced temperature | 8.1 | 07595
07638
07726
07726 | 07814
07858
07902
07946
07940 | 08034
08078
08123
08167
08211 | 08344
08344
08344
08433 | 06477
08521
08566
08610 | 08599
08744
08733
08833 | 08923
08967
09012
09057 | 09146
09191
09236
09281 | 09371
09416
09461
09506 | 09596
09641
09687
09732 | 09822
09867
09913
09958
10003 | 10049
10094
10139
10185
10230 | 10275
10321
10362
10412
10412 | | Parado re | 1.15 | 04770
07763
07806
07809 | 07935
07979
08022
08065
08108 | 06153
06195
06238
06338 | 08369
08412
08456
08489 | 08586
08630
08673
08717
08717 | 088904
08848
08892
088935 | 09023
09067
09111
09154
09186 | 09242
09286
09330
09374
00418 | 08462
08556
08550
08594
09638 | 09682
09727
09771
09815 | 09903
09948
09992
10036 | 10125
10169
10214
10258
10302 | 10347
10391
10436
10480
10625 | | | 1.10 | 07905
07948
09903
09033 | 0816
08160
08202
08202
08245 | 985330
98533
98435
98458 | 08543
08586
08628
08671 | 06757
08842
08842
08828 | 08971
09014
09057
09100 | 09186
09229
09272
09315 | 09444
09444
09530
09530 | 09616
09659
09703
09746 | 09832
09875
09919
09962
10005 | 10049
10092
10135
10179
10222 | 10266
10309
10352
10396
10439 | 10483
10526
10670
10613
10613
 | | 1.8 | 08238
08238
08239
08239 | 06424
06424
06507
06507 | 08590
08632
08674
06715
06715 | 06840
06840
06824
06652 | 09008
09050
09133
09175 | 09217
09259
09301
09343 | 09427
09470
09512
09554 | 09638
09680
09723
09765 | 00849
09892
09934
09976 | 10061
10103
10146
10188
10231 | 10273
10316
10401
10401 | 10486
10528
10571
10614
10656 | 10699
10742
10784
10627
10627 | | P de la constant | P. P. | 22222
22222 | 22222
22222 | 22222
23232 | 22222
28252 | 82528 | 22222
85282 | 82332
82332 | 200000
200000
200000 | ###################################### | 111111
1111111111111111111111111111111 | 77.77.77
5.55.77
5.55.55 | 33333
3333
3353
3353
3353 | 77777
88888 | ### SECTION 5 EXTRAPOLATION OF MEASURED OPEN FLOW RATES #### 5.1 <u>Introduction</u> It is common practice in the petroleum industry to maintain updated graphical records of producing rates plotted versus time, among other possible variables. The producing rates may be on well, lease, reservoir or field bases. Plots of production rate versus time are called "decline curves" even though there may be periods of rate increases. The main use of decline curves is to predict future producing rates and ultimate recovery by extrapolating past producing rate history into the future. In the case of well blowouts, where a period of unmeasured blowout rates is followed by a period of measured blowout rates, it is just as reasonable to extrapolate into the past. The extrapolation of decline curves, into either the past or the future may be done by drawing a trend line or curve through the data from which the extrapolation is made. Because extrapolation of straight or nearly straight lines is more reliable than extrapolating curved lines, an attempt is usually made to discover a type of plot which produces a straight line, or one nearly straight. These techniques are discussed in Ref. 5.1, and will not be repeated here. A more objective approach to extrapolation is by curve fitting in which a variety of mathematical forms relating flow rate and time is explored to find the one which fits the data with the smallest deviation. In this method, as in graphical "eyeball" extrapolation, it is often observed that the earlier and later portions of the data appear to have different trends. In this case, of course, it is reasonable to use the later portion of the data to forcast future rates, and the earlier portion to backcast. #### 5.2 Diverting Blowouts Blowout wells are often brought under control by capping. In this procedure a section of pipe containing a full opening valve or valves is positioned over the flow stream so that it flows through the pipe section and valve(s). The pipe section is sealed to the well casing after which closing the valve brings the well under control. In some cases it is feared that closing the valve will cause an underground blowout, i.e., gas will flow from the blowout formation to another, usually much shallower, formation or to the surface around (outside of) the casing. In other cases it is feared that the casing to which the cap is attached will not withstand the pressure when the valve is closed. In these cases the capping section is provided with side outlets or diverter lines below the valve(s), so that when the valve is closed, the stream is diverted away from the well. Now it is possible to place a rig over the well and using snubbing procedures to get pipe down the well through which heavy mud or cement may be pumped to kill the well or to complete it as a producing well. A similar situation exists where the blowout preventers are closed and the well blows through diverter or blooie lines, whose valves are not closed, as explained above, for fear of casing rupture, failure of the blowout preventers, and/or underground blowouts. In some cases the diverted gas is flared and in others it is captured for sales. In the former case it is possible under some circumstances to estimate flow rate from the pressure in the diverter or blooie line, as discussed in Section 4. Where the gas is sold, it is of course measured. In both of these cases it may be some time after start of blowout before flow rates are measured, and rates during this period can be estimated using extrapolation techniques. #### 5.3 Example Illustrating Extrapolation Many mathematical forms are used to define decline curves: linear, exponential, polynomial, hyperbolic, harmonic, etc. The most commonly used form is the exponential decline, i.e., one in which flow rate declines exponentially with time and therefore plots as a straight line on semilog paper, rate plotted on the log scale. Example 5.1 illustrates the extrapolation of measured blowout rates to estimate rates prior to the installation of measurement devices. #### Example 5.1 A diverter installation was completed on a blowing gas well 18 days after start of blowout. During the following 25 days gas was flowed into a pipeline while snubbing operations were in progress to kill the well. Flow rate data was available for only 10 of the last 25 days before the well was brought under control: DAYS 19 21 24 27 29 32 35 37 41 43 MMSCF/D 48.2 49.1 49.2 42.8 45.0 41.9 39.3 36.2 36.7 35.1 Fig. 5.1. Plot of flow rate data for Example 5.1. #### Solution-Graphical 1. Plot the data on semilog paper, Fig. 5.1. 2. Draw a straight line through the data points, and extrapolate to t=0 and t=50. Read: q=70.0 MMSCF/D for t=0 days q=30.0 MMSCF/D for t=50 days Solve for $$q_0$$ and a in $q = q_0 e^{-at}$ For $t = 0$, $70 = q_0 e^{-a(0)}$ or $q_0 = 70$ For $$t = 50$$, $30 = 70e^{-a(50)}$ and $a = 0.017 \text{ days}^{-1}$ 3. Vented gas during first 18 days $$Q = \frac{q_0 - q_{18}}{a}$$ $$= \frac{70.0 - 51.0}{0.017}$$ = 1120 MMSCF 4. Vented gas during last 25 days $$Q = \frac{q_{18} - q_{43}}{a}$$ $$Q = \frac{51.0 - 34.0}{0.017}$$ Q = 1000 MMSCF #### Solution-Analylical Use the method of Least Squares to calculate the equation of the straight line (semilog plot) which best fits the data. Using $q=q_0e^{-at}$ as the basic form and ln $q=\ln \ q_0+at$ as the linear equivalent, the Least Square equations are: $$\Sigma$$ ln q = n ln $q_0 + a\Sigma t$ Σ t ln q = ln $q_0 \Sigma$ t+a Σ t^2 For the example: n=10, Σ ln q=37.385; Σ t=308; and Σ t =10,096. Placing these values in the above equations: $$37.385 = 10 \ln q_0 + 308a$$ $1142.3 = 308 \ln q_0 + 10096a$ These solve to yield q =67.3 MMSCF/D and a=-0.0151 days $^{-1}$. Using these values the calculated values of q(18 day)=51.3 MMSCF/D and q(43 days)=35.2 MMSCF/D. Then the gas vented during the first 18 days is calculated as Q = (67.3-51.3)/0.0151 = 1060 MMSCF and that during the last 25 days as Q = (51.3-35.2)/0.0151 = 1066 MMSCF. #### 5.4 Error Analysis With data of the quantity and quality of that given in Example 5.1, the calculated vented gas volume during the first 18 days should be within five percent. This assumes that the flow rate is declining during those first 18 days at the same exponential rate as in the later 25 days. There is, of course, no assurance that this is true, although it is a most reasonable assumption. There are factors which could cause the flow rate in the early days to be either higher or lower than the extrapolated values. The accuracy of the extrapolation may be improved by fitting a curve to the data, using statistical techniques such as the method of Least Squares, as shown in Example 5.1. Such techniques are also useful where there are larger and most erratic fluctuations in the data. They provide an objective calculation of the best fit of a line or curve to the data points as opposed to the "eyeball" method. Some consideration should be given to the effect of installing a diverter line on the well and to the effect of connecting the diverter line into a pipeline into which the gas must flow against the prevailing pipeline pressure. The calculation methods of Example 8.1 are available for evaluating the effect of these. ## Section 6 ESTIMATES FROM BACK PRESSURE TESTS #### 6.1 Introduction Extrapolation of back pressure tests of gas wells at low rates is used in regulatory work to determine the open flow capacity (rate). The open flow capacity is the rate at which a well would flow if the flowing bottom hole pressure were atmospheric, i.e., if there were no flow string resistance, only formation resistance. Open flow capacities are therefore estimates of maximum rates during blowouts. Back pressure testing consist of flowing a well at several successive rates and measuring at each rate the flowing bottom hole pressure, the flowing well head pressure and the flow rate. The static reservoir pressure is also measured or calculated from measured static well head pressures. The theory and practice of back pressure testing is discussed in Refs. 6.1-6.3. The data from a back pressure test are plotted on log-log paper with flow rate as abscissa versus the differences of the squares of the static and flowing bottom hole absolute pressures. In most cases the data plot as a straight line, and extrapolate to the open flow capacity, i.e., flowing bottom hole pressure equal to atmospheric pressure. The results of back pressure tests are useful in calculating the rate at which gas wells can flow against any surface (back) pressure. With proper caution, these tests can also be of use in estimating blowout rates; particularly if a test has been made on a well which later blew out, or with less precision on a well using back pressure tests from other wells producing from the same reservoir. #### 6.2 Back Pressure Test Theory The formula for the steady-state, radial flow of gases in the reservoir in the laminar regime is basic to most back pressure test theory. It is derived in Ref. 6.2 as $$q_{sc} = \frac{703 \text{ k h } (p_e^2 - p_w^2)}{\mu \text{ T z ln }
(r_e/r_w)}$$ (6.1) Equation (6.1) predicts that a plot of flow rate versus the difference of the squares of the pressures on log-log paper will give a straight line whose slope is 45°. Experience shows that for the data from many wells this is true, particularly at lower flow rates. For other wells and at higher flow rates the slope is usually less than 45° and the formula of Eq. (6.1) is modified as $$q_{sc} = \frac{703 \text{ k h } (p_e^2 - p_w^2)^n}{\mu \text{ T z ln } (r_e/r_w)}$$ (6.2) The need for the exponent n in Eq. (6.2) is usually explained by the occurrence of turbulent flow in the formation. At low flow rates the regime is laminar and n = 1. At higher rates turbulent flow begins in the vicinity of the well, where gas velocities are highest. As flow rate is increased, the turbulent zone extends further into the formation, and under open flow conditions a considerable portion of the drainage area is in turbulent flow. The back pressure formula is therefore written as $$q_{sc} = C(p_e^2 - p_w^2)^n$$ (6.3) From Eq. (6.2) the coefficient C is a characteristic of each well and its drainage area, and includes the geometry (h, r_e and r_w), gas characteristics (μ and z), and formation permeability and temperature (k and T). As the values of some of these parameters are difficult to determine individually, they are grouped in the coefficient C. Taking the logarithm of both sides of Eq. (6.3), it becomes $$\log q_{SC} = \log C + n \log(p_e^2 - p_W^2)$$ (6.4) Figure 6.1 is a typical plot of data taken in a back pressure test. For a slope of 40° , n=tan 40° =0.839. Extrapolation from the measured data to a flowing bottom hole pressure of 14.7 psia yields an open flow capacity of 53 MMSCF/D. It should be realized that the open flow capacity is a theoretical figure used for practical purposes, by regulatory bodies to deter- Fig. 6.1. Typical back pressure data plot with extrapolation to find open flow capacity p_e =1290psia. mine allowables. The extrapolation assumes the constancy of the exponent n, i.e., an unchanging flow regime, and also the constancy of flowing temperature, gas viscosity and gas deviation factor. In back pressure testing, the flow at a selected rate should be continued long enough for the reservoir to closely approach steady state conditions. Whenever stabilization cannot be reached within a reasonable period of time because of reservoir conditions, or when flow rates of sufficient duration to reach stabilized conditions are impractical, the constant time multipoint test (Refs. 6.5, 6.6 and 6.7) or the isochronal method (Ref. 6.6) should be used. Both methods are devised to give the coefficient C and the exponent n. #### 6.3 <u>Estimation of Blowout Rate from Back Pressure</u> Tests on the Blowout Well In the above discussion it was pointed out that the blowout rate of a gas well will be lower, generally much lower, than the open flow capacity of the well because of two factors. One of these is the increasing importance of turbulence at higher flow rates, where test data are usually not taken. The other is the flow string resistance, which is not included in the back pressure test which measures only formation resistance. Some idea of the importance of these factors can be understood from a theoretical study by Elenbaas and Katz, Ref. 6.3. This study pertained to a well 5000 feet deep with a static reservoir pressure of 2100 psia. Flow was through a casing of 6-5/8 inches I.D. The formation porosity was 26 percent for a Wilcox sand of 48-65 mesh for which permeability and turbulence characteristics were determined by laboratory tests. Calculations were placed on one foot of formation thickness for a gas gravity of 0.65 (Air=1) and a reservoir temperature of 115°F. The solid line of Fig. 6.2 is the calculated back pressure plot. Note that in the low flow rate range the slope is 45° (n=1.00) and that it increases progressively through the so called transition (partially turbulent) range to the almost fully turbulent range where the slope approaches 60° (n=0.5). At 50 MMSCF/D the friction of the flow string caused the flowing bottom hole pressure to be approximately 1500 psia. Thus, the blowout rate is determined as 50 MMSCF/D and not some considerably higher rate, the open flow capacity, taken where flowing bottom hole pressure is assumed to be atmospheric. Figure 6.2 also shows the error of extrapolating back pressure data taken in the laminar or laminar-turbulent transition range to estimate either open flow capacities or blowout rates. Although data / taken over a limited range of flow rates usually appears to be linear on the log-log plot, over a wide range the data plot as a curve as shown in Fig. 6.2. Table I gives an idea of the overestimation of blowout rates from improper extrapolation. In some back pressure tests the data do not plot as or near to a straight line on log-log paper. In most of these cases the data are usually erratic, and where four or more data points are available there Fig.6.2 Back pressure curve covering laminar through full turbulent flow in the reservoir. Table I | Line (Fig. 4.2) | Α | В | С | |------------------------|----|-----|-----| | Est'd Blowout Rate | 50 | 100 | 300 | | Percent Overestimation | 0 | 100 | 600 | is no reasonably smooth trend line which can be drawn through the data. The usual explanation for this be-havior is formation damage which varies with flow rate. Graham and Boyd, Ref. 6.4, have shown that back pressure tests on a number of Gulf Coast wells taken shortly after completion may not be reliable for predicting later flow performance, that both the coefficient C and the exponent n of Eq. (6.3) may change during production. These wells were generally found to have better flow characteristics after weeks or months of production during which the well was cleaned of formation damages during drilling and/or completion. In view of the foregoing it is obvious that back pressure test data obtained on a well prior to blowout should be used with caution in estimating the well's blowout rate. Use of stabilized back pressure data without these considerations will generally result in an overestimation of the blowout rate by as much as several hundred percent. # 6.4 Use of Back Pressure Tests on Other Wells in the Same Reservoir Section 6.3 discussed the problems of using back pressure data on the blowout well to estimate its subsequent blowout rate. Let us now consider the additional difficulty of using back pressure data, not from the blowout well, but from other wells completed in the same reservoir. The flow performance of a gas well depends on several parameters. These parameters are classified into two groups. The first group include parameters which can reasonably be assumed to remain essentially the same at different wells in the same reservoir, such as: - 1. shut-in pressure - 2. reservoir temperature - 3. average gas viscosity - 4. gas deviation factor Fig. 6.3. Back pressure data on 23 wells in one field. (After Rawlins and Schellhardt, Ref. 6.1. Courtesy U.S. Bureau of Mines.) The second group includes parameters that are more likely to vary, sometimes drastically. Some of these parameters are: 1. formation thickness 2. formation permeability formation damage (skin) 4. well stimulation 5. drainage radius 6. effective well radius type of completion It should be expected, therefore, that wells producing from the same reservoir will exhibit different flow characteristics. Figure 6.3 after Rawlins and Schellhardt (Ref. 6.1), shows the results of back presure tests on 23 wells in one field, presumably completed in the same reservoir. Although it is likely that a study of the available data would explain some of the differences among the wells, it appears that at least a ten-fold variation exists in the open flow capacity of these wells. #### 6.5 Illustrative Example A gas well blew out of control for 10 days. The back pressure equation describing flow in an offset well where sand thickness averaged 38 feet is $$q = 1.24 (p_e^2 - p_W^2)^{0.74}$$ where q is in MSCF/D. Assuming the same value of the exponent for the wild well, its back pressure equation may be written as $$q = C(p_e^2 - p_W^2)^{0.74}$$ From Eqs (6.2) and (6.3) we may write $$\frac{C}{h} = \frac{703 \text{ k}}{\mu \text{ T z ln}(r_e/r_w)}$$ Assuming k, μ , T, z, r_e and r_w are the same for both wells, C for the blowout well will be that for the offset well increased by the ratio of the formation thicknesses at the two wells. As formation thickness at the blowout well was determined to be 57 feet, Fig. 6.4. Graphical solution to illustrative example, C for the blowout well is calculated as $$C = 1.24 \times \frac{57}{36} = 1.96$$ and the calculated back pressure equation for the wild well is $$q = 1.96 (p_e^2 - p_w^2)^{0.74}$$ Reservoir pressure at the time of blowout was close to 5200 psia and the flowing bottom hole pressure was calculated to be 4800 psia at 150,000 MSCF/D using the methods of Section 8. Thus, the estimated blowout rate is $$q = 1.96(5200^2 - 4800^2)^{0.74}$$ q = 150,000 MSCF/D (150 MMSCF/D) Assuming slope of 0.74, at p_W = 14.7 psia the open flow capacity for the blowout well is calculated to be 600 MMSCF/D, and at 4800 psia flowing bottom hole pressure 150 MMSCF/D. The graphical solutions for the above calculations are shown in Fig. 6.4. Also shown are extrapolations assuming complete turbulence is reached at a flowing bottom hole pressure of 4800 psia, i.e., that n = 0.50. For the blowout well this gives an estimated blowout rate of 115 MMSCF/D. Thus for 10 days the vented gas lies between 11.5 and 15.0 MMSCF. These figures are, of course, subject to large uncertainties. In addition to those introduced in the extrapolation of back pressure data, in this example we have those of adapting back pressure data from another well in the same reservoir. The accuracy of back pressure data is also open to
question in some tests. For instance, in the example presented, the pressure drawdown, pe-pw, was 66 psi at 24 MMSCF/D and only 13 psi at the lowest rate of 7 MMSCF/D. Even where these pressures are measured with subsurface gauges, small uncertainties in the static and flowing pressures can cause large uncertainties in the back pressure curves. For example, had the drawdown at 24 MMSCF/D been 70 psi, rather than 66 psi, the slope between the two highest points would be 0.62 rather than 0.74, the average of all points. Where the pressure is calculated from surface measurements of a static column in an annulus or kill string, additional uncertainties are introduced. ## SECTION 7 FORMATION RESISTANCE #### 7.1 Introduction Flow string resistance and formation resistance control the amount of escaping gas during a blowout. Formation resistance occurs as gas flows through the small, tortuous pore spaces of the reservoir rock toward the wellbore. Flow string resistance occurs as gas flows up the wellbore toward the surface. These two resistances act in series, and it cannot be said, a priori, which is the more dominant. Techniques are available to estimate the relationship of the flow rate of the escaping gas to these two resistances. The procedure follows three basic steps: #### 1. Formation resistance Using an appropriate formula for the flow of gas in the reservoir, the flow rates are calculated for a range of flowing bottom hole pressures. A plot of these data such as shown in Fig. 7.1 is an expression of the formation resistance, which involves properties of the reservoir rock and gas. As indicated, maximum flow rate occurs for zero bottom hole pressure, and the rate declines as bottom hole pressure rises. #### 2. Flow string resistance Using appropriate formulas for the flow of gas through pipes, annuli, etc., a flow rate is assumed and using a surface flowing pressure (usually zero psig) the pressure is calculated at the bottom of the flow string. Other bottom hole pressures are calculated for a range of assumed flow rates, the results of which plotted, as in Fig. 7.1, express the resistance of the flow string to the flow of gas. #### 3. Blowout rate The intersection of the formation and flow string resistance curves is the calculated blowout rate, about 55 MMSCF/D for the plots of Fig. 7.1. Procedures for calculating the formation resistance are investigated in this section and those for flow string resistance in Section 8. In Section 9 the combination Fig.7.1 Typical formation and flow string resistance curves. of the two procedures to estimate blowout rate(s) is discussed. Although the calculation techniques are based on established engineering principles and their use is straight forward, the results are strongly influenced by certain pieces of the data, some or all of which may be subject to large uncertainty. Also the calculations are laborious and are most appropriately handled by computers. The computer technique also allows extensive sensitivity analysis to help bracket data uncertainties. #### 7.2 Reservoir Geometry The relationship of flow rate to pressure drop experienced by gas as it flows through the reservoir rock is influenced by: reservoir geometry, gas properties, and reservoir rock properties. All of the calculation procedures used in this report are based on flow systems of radial geometry, such as shown in Fig. 7.2. In this radial system $^{\rm r}_{\rm W}$ represents the radius of the wellbore, $^{\rm r}_{\rm e}$ represents the outer or external radial boundary of the reservoir, and h represents the net thickness of the formation. The value of $^{\rm r}_{\rm W}$ is commonly taken to be the radius of the Fig. 7.2. A radial system of thickness h, external radius $r_{\rm e}$, and well bore radius $r_{\rm w}$. drill bit if gas is flowing into an open hole and is taken to be the internal radius of the casing if it is flowing through perforated casing. The value of $r_{\rm e}$ is the radius of the boundary of the reservoir if the reservoir is indeed circular. Since no reservoirs are truly radial in shape and wells may be located off center, an equivalent radius is normally used, defined as the radius of a circle whose area is the same as the reservoir. This procedure has been shown in practice to be a good approximation for most reservoir systems. For the reservoir area A in acres, the equivalent external radius $r_{\rm e}$ in feet is: $$r_{e} = [43,560 \text{ A/}\pi]^{0.5}$$ (7.1) For an area of 125 acres, the equivalent external radius is: $$r_e = [43,560 \times 125/3.14]^{0.5} = 1316 \text{ ft.}$$ #### 7.3 Steady State Flow One formula which relates the gas flow rate q sc and the flowing bottom hole pressure p w for radial systems is derived as Eq. (6.72) of Ref. 7.1 as: $$q_{SC} = \frac{703 \text{ kh } (p_e^2 - p_w^2)}{\mu Tz \ln(r_e/r_w)}$$ (7.2) in which q_{SC} = flow rate in SCF/day at standard conditions of 14.7 psia and 60°F k = reservoir permeability, darcies h = reservoir thickness, feet p_e = pressure at radius r_e , psia p_W = wellbore pressure at r_W , psia p_W = average gas viscosity, centipoise p_W = reservoir temperature, degrees Rankine p_W = average gas deviation factor, dimensionless p_W = ratio of external radius to well bore radius, dimensionless. Equation (7.2) is commonly referred to as a steady state equation. It assumes the maintenance of pressure at a value P_e at the external radius r_e . This would be the case for active water drive gas reservoirs in which reservoir pressure is maintained at P_e , and for which Eq. (7.2) would be applicable except for an initial transient period which is discussed later. The pressure P_e is the reservoir pressure measured or estimated at the time of blowout. Equation (7.2) may be used as shown in Example 7.1 to calculate a formation resistance such as Fig. 7.1, which shows the relationship between bottom hole pressure and flow rate. #### Example 7.1 P_e = 4500 psia; P_W = 3000 psia; k = 0.064 darcy h = 15 feet; μ = 0.025cp; z = 1.10 r_e = 6000 ft; r_W = 0.333 ft; T = 660°R $q_{sc} = \frac{703x0.064x15(4500^2 - 3000^2)}{0.025x600x1.10x1n(6000/0.333)}$ $q_{sc} = 47.0 \text{ MMSCF/D}$ For $_{\rm W}^{\rm p}$ = 0, $_{\rm SC}^{\rm q}$ = 85 MMSCF/D. These points are included in the reservoir curve shown in Fig. 7.1. #### 7.4 Error Analysis The terms in the denominator of Eq. (7.2) can be evaluated much more precisely than those in the numerator. All of which determine the relationship between the flow rate and the bottom hole pressure. Gas deviation factors and viscosities can be estimated with good precision using the methods of Ref. 7.2. Reservoir temperatures can also be estimated with good precision in nearly all instances. At first glance, the uncertainty in estimating the external radius $^{\rm r}_{\rm e}$ might appear to have a large effect on the calculation; but because both it and the wellbore radius, which is also subject to considerable uncertainty, enter the formula as logarithms, the effect of their uncertainty is relatively small. This may be illustrated by considering values of the external radius as twice (12,000 feet) and half (3,000 feet) the 6,000 foot radius used in Example 7.1. As $\ln(12,000/0.333) = 10.5$, $\ln(6,000/0.333) = 9.8$, and $\ln(3,000/0.333) = 9.1$, it is seen that a 100 per cent variation in the estimate of the external radius (or the ratio $^{\rm r}_{\rm e}/^{\rm r}_{\rm W}$) produces less than an 8 per cent variation in the logarithm. On the other hand, the uncertainty in some of the other variables, particularly formation thickness and permeability, may be quite large, sometimes even in well developed reservoirs whose formation thicknesses and permeabilities vary widely throughout the reservoir and are reflected invarying well productivities. In discovery wells, the reservoir permeability can only be estimated from permeability trends in the area, depth or knowledge about the particular formation. The formation thickness may be obtained from driller's logs. electric or other logs run, but there is uncertainty about how representative the thickness at the well is of the whole drainage area. Also, in some instances the blowout may occur before the producing formation has been fully penetrated. In any event, the uncertainties in permeability and thickness are reflected directly in the calculated values of flow rates for assumed bottom hole pressures. Good estimates of thickness can be obtained from isopach maps in areas having good well control. The effect of uncertainty in the external pressure pe, taken to be reservoir pressure at the time of blowout, varies with the absolute values of both the reservoir pressure and the assumed bottom hole pressures. For example, had the external pressure been 4400 psia instead of 4500 psia in Example 7.1, the calculated flow rate would have been 45 MMSCF/D instead of 47 MMSCF/D. #### 7.5 <u>Semi-Steady State Flow</u> Where water drive is absent and after an initial transient period as mentioned above, the radial gas flow formula Eq. (6.81) of Ref. 7.3 applies. $$q_{sc} = \frac{703 \text{ kh}(p_e^2 - p_w^2)}{\mu Tz \ln(0.61 r_e/r_w)}$$ (7.3) The only difference between Eq. (7.3) and Eq. (7.2) is in the log term. Because of the relative insensitivity of the log term, as discussed in Sec. 7.4, flow rates calculated using Eq. (7.3) will be only slightly larger than those using Eq. (7.2). Furthermore, the remarks of Sec. 7.4 about error analysis apply equally to Eq. (7.3). The external pressure P_e in Eq. (7.3) is taken as the measured or estimated pressure at the start of blow-out. In the absence of water drive, average reservoir pressure will decline during the blowout, and therefore also the external pressure. Where the pressure decline is small, i.e., where the volume of vented gas is small in relation to the initial gas in place in the reservoir, continued use of the initial pressure will cause only a small overestimate
on the blowout rates, and in view of the other uncertainties, continued use of the initial pressure may be justified. Where the pressure decline is appreciable, another semi-steady state formula is applicable, Eq. (6.82) of Ref. 7.3, or $$q_{sc} = \frac{703 \text{ kh}(p_{avg}^2 - p_w^2)}{\mu Tz \ln(0.472 r_e/r_w)}$$ (7.4) In this equation, the external pressure is replaced by the average reservoir pressure, p_{avg} . Use of this equation requires a good estimate of the reservoir's hydrocarbon pore volume, calculated by Eq. (2.1) or Eq. (2.2) of Sec. 2 and then the use of Eq. (2.1) to calculate the average reservoir pressure, using for the cumulative produced gas G_p a summation of the daily blowout volumes. Example 7.2 illustrates this procedure using the data of Example 7.1 and a value for the hydrocarbon pore volume calculated as shown in Example 2.1 #### Example 7.2 P_e = 4500 psia; k = 0.064 darcy h = 15 feet r_e = 6000 ft; r_W = 0.333 ft; T = 600 R μ = 0.025cp & z = 1.100 at 4500 psia & 600 R μ = 0.025cp & z = 1.095 at 4461 psia & 600°R V_{HCPV} = 340x10⁶ft³ From Fig. 7.1 the initial blowout rate is determined as 55 MMSCF/D from the intersection of the formation and flow string resistance curves. Assuming this rate for 5 days, the cumulative vented gas after 5 days of blowout is 275 MMSCF. Placing this value in Eq. (2.1) $$\frac{14.7x275x10^{6}}{520} = \frac{4500x340x10^{6}}{1.10x600} - \frac{340x10^{6}}{600}x \left(\frac{p}{z}\right)_{av}$$ $$\left(\frac{p}{z}\right)_{avg} = 4074 \text{ psia}$$ From a plot of z vs $\frac{p}{z}$ for this reservoir gas, z = 1.095 and $p_{avg} = 1.095x4074 = 4461 psia$ This value of p avg may now be used in Eq. (7.4) to find a new reservoir resistance curve, the dashed curve of Fig. 7.3. The intersection of this curve and the flow string resistance curve provides a new and lower value of the blowout rate, approximately 53 MMSCF/D as shown in Fig. 7.3. This value may then be assumed to hold for the next five days, or another selected interval, and the procedure continued. Where the pressure decline is sufficient for using the material balance method described in Section 2, the cumulative vented volumes calculated by both methods may be compared. The method described by Example 7.2 includes, in addition to the errors discussed in Sec. 7.4, the error in estimating the hydrocarbon pore volume and those introduced in calculating the flow string resistance curve. The latter will be discussed in Section 8. In many cases the reservoir drive mechanism is not known. It may be active water drive, partial water drive or volumetric expansion. In this event, the procedures described in both Secs. 7.3 and 7.4 should be followed, the results of which bracket the best estimate of the vented gas volumes, and include the possibility of partial water drive. #### 7.6 Transient Flow The methods described in Secs. 7.3 and 7.5 assume Fig.7.3. Formation resistance curves as calculated in Example 7.2. that the steady-state or semi-steady state pressure distributions are established in the reservoir in a small and negligible period of time. The approximate time to establish these distributions is expressed by Eq. (6.29) of Ref. 7.4 in which the time referred to is called the readjustment time, or the time for a reservoir to adjust to steady-state or semi-steady state conditions following a sudden change in flow rate, e.g., a blowout. $$t_R = \frac{0.04 r_e^2}{\eta} = \frac{0.04 \mu c \phi r_e^2}{k}$$ (7.5) in which t_R = time, days μ = gas viscosity, centipoise c = gas compressibility, psi⁻¹ ϕ = formation porosity, fraction k = permeability, darcies r_e = reservoir radius, ft The gas compressibility may be calculated by methods explained in Ref. 7.5. For the conditions of Example 7.1, and a gas compressibility of $100 \times 10^{-6} \, \mathrm{psi}^{-1}$ and a hydrocarbon porosity of 20 per cent, $$t_{R} = \frac{0.04 \times 0.025 \times 100 \times 10^{-6} \times 0.20 \times 6000^{2}}{0.064}$$ $$t_R = 11 \text{ days}$$ For an external radius of 12,000 feet, the corresponding readjustment time is 44 days. The important variables affecting the readjustment time for gas reservoirs are permeability, gas compressibility, and reservoir size, i.e., re. Gas compressibility decreases with pressure and therefore also generally with depth. Thus large readjustment times are to be expected for larger, shallower (lower pressure) reservoirs and those having lower permeability. Equation (7.5) may be also used to calculate the transient drainage radius at any time, i.e., the radius beyond which reservoir pressure has not been appreciably changed up to that time by the blowout or other rate changes. Inverting Eq. (7.5) $$r_{e} = \left[\frac{kt}{0.04\mu c\phi}\right]^{0.5} \tag{7.6}$$ This value may then be substituted for r_e in Eq. (7.2) to yield $$q_{sc} = \frac{703 \text{ kh}(p_e^2 - p_w^2)}{\mu \text{Tz}(0.5) \ln(\text{kt}/0.04\mu \text{c}\phi r_w^2)}$$ (7.7) Equation (7.7) may be used to calculate reservoir resistance curves at any time t by procedures illustrated by Example 7.3. #### Example 7.3 $$^{\rm p}_{\rm e}$$ = 4500 psia; k = 0.064 darcy; μ = 0.025 cp c $_{\rm g}$ = 100x10 $^{\rm -6}$ psi $^{\rm -1}$; φ = 0.20; $r_{\rm w}$ = 0.333 ft $r_{\rm e}$ = 6000 ft; h = 15 ft; T = 6000R For $^{\rm p}_{\rm w}$ = 3000 psia: In Eq. (7.7). $$\frac{703 \text{ kh}}{\mu^{\text{Tz}}(0.5)} = \frac{703\text{x}0.064\text{x}15}{0.025\text{x}600\text{x}1.10\text{x}0.5} = 81.8\text{x}10^{6}$$ and $k/0.04\mu c\phi r_W^2 = 0.064/0.04x0.025x0.20x0.333^2$ = 28.8 Therefore: $$q_{sc} = \frac{81.8 \times 10^6 (4500^2 - p_w^2)}{1n \ 28.8 \ t}$$ For $P_W = 2500$ psia, after 1 day of flow $$q_{sc} = \frac{81.8 \times 10^6 (4500^2 - 2500^2)}{1n(28.8 \times 1)}$$ $q_{sc} = 66.6 \text{ MMSCF/D}$ After 5, 11, 50 and 100 days for $_{\rm W}^{\rm p}$ = 2500 psia, $_{\rm SC}^{\rm q}$ = 60.0, 58.4, 54.3 and 52.5 MMSCF/D, respectively. Other values of $_{\rm W}^{\rm p}$ are assumed to provide data points for the curves of Fig. 7.4. Figure 7.4 shows the formation resistance or pressure distribution curves for the reservoir of Example 7.3 at 1, 5, 11, 50 and 100 days. It is to be noted that the 11 day curve is the same as the reservoir resistance curve of Fig. 7.1 and essentially the same as the upper curve of Fig. 7.3, the slight difference being caused by the use of $\ln(r_e/r_W)$ in Fig. 7.1 and $\ln(0.65 r_e/r_W)$ in Fig. 7.3. If the reservoir has an effective external radius of 6,000 feet as used in Example 7.1, 7.2, and 7.3, and an active water drive to maintain pressure at its initial value, then the ll day curve of Fig. 7.4 may be used for the duration of the blowout. The effect of an error in the estimated effective external radius may be investigated by considering, for example, a value of 12,000 feet, i.e., a reservoir fourtimes as large. For this larger reservoir the readjustment time will be 44 days, and yield a steady-state formation resistance curves slightly above the 50 day curve of Fig. 7.4. If on the other hand, the reservoir is of 6,000 feet in radius and has no water drive, then, after reaching the 11 day curve, the reservoir resistance curves will begin to change as shown in Fig. 7.3. As with the water drive reservoir, the effect of a larger external Fig.7.4. Transient formation resistance curves for Example 7.3. radius, may be investigated. For an effective external radius of 12,000 feet, as this would be a reservoir fourtimes as large as the one of 6,000 feet, upon reaching semi-steady state performance at 44 days, the rates of pressure decline would be only one-fourth those calculated in Example 7.2 and shown in Fig. 7.3. The intersections of the formation resistance curves with the flow string resistance curve of Fig. 7.4 give the blowout rates during the transient period, varying from 57.2 MMSCF/D at one day after start of blowout to 51.6 MMSCF/D after 100 days. For the latter figure it is assumed that the effective reservoir radius is at least as large as 18,000 feet which would allow a transient flow period of 100 days before entering into steady state or semi-steady state flow. A plot of the intersections of the curves of Fig. 7.4 yields the lower curve of Fig. 7.5, from which the cumulative vented gas during the transient period is represented by the area under the curve. For an 11 day transient period the vented gas amounts to about 610 MMSCF, which includes an estimated 60 MMSCF during the first day. The flatness of the lower curve of Fig. 7.5 may be somewhat surprising to those familiar with flow rate changes for constant bottom hole pressure. Fig.7.5. Calculated transient blowout rates for a constant bottom hole pressure of 2500 psia (upper curve) and for declining bottom hole pressure (lower curve). The upper curve of Fig. 7.5 shows the flow rate at a constant bottom hole pressure of 2500 psia, showing rates much higher, particularly in the early blowout period, than for the case of declining bottom hole pressure, which prevails during blowouts. #### 7.7 Summary and Commentary Methods have been presented in the foregoing by which the formation resistance curves may be calculated. Where there is doubt whether the reservoir has active, partial or no water drive, calculations should be made for cases of both active and no water drive. Similarly, the effect of effective reservoir radius and initial pressures should be investigated to help bracket the formation resistance curves. Use of computer programs is recommended to facilitate the investigation of different cases and variable sensitivity. Reservoir permeability and thickness were cited as parameters in the formulas to which the calculated formation resistance curves are most sensitive. These parameters are unfortunately also the ones whose values are known with the least certainty. They are often used as one variable, the kh product to which the term capacity has been given. The effect of a wide range of possible
formation capacities on the formation resistance curves, and therefore on the blowout rates, is treated in Section 9. The formulas used in the foregoing section are well established in reservoir engineering practice. They do not, however, include the effect of such things as turbulent or non-Darcy flow in the formation, partial well penetration of the formation, zonal damage, wellbore erosion, and perforation efficiency. They have not been included in the calculations because there is no way to evaluate them for blowout wells, and as a matter of fact, their evaluation is often difficult with normal producing wells. The effect of the first three is always to increase formation resistance, that is to reduce the flow rates below those calculated without their consideration. Their individual or combined effects may increase the formation resistance appreciably. Wellbore erosion, on the other hand will decrease the formation resistance by increasing the effective wellbore radius. As explained earlier, because the well radius occurs in a logarithm term, its effect on the calculated resistance curves is greatly attenuated. Perforation efficiencies are believed more usually to increase formation resistances, i.e., have the effect of a well bore radius smaller than the inside diameter of the casing. Even in the best of cases however, perforation does not reduce formation resistance appreciably, i.e., increase the effective well bore radius. A discussion of the factors mentioned in the preceding paragraph is found in Ref. 7.6. In the estimation of well blowout rates it is recommended that consideration of these factors be included as part of the effect of formation capacity, to be discussed in Section 9. ## SECTION 8 FLOW STRING RESISTANCE #### 8.1 Introduction The computation of formation and flow string resistances was outlined in Sec. 7.1 along with a brief description of their use to estimate gas blowout rates. Section 7 covered the calculation of formation resistance curves for a variety of reservoir conditions, and this section will cover the calculation of flow string resistance curves. Flow string resistance curves are calculated using appropriate formulas for the flow of gas through pipes, annuli, etc. by assuming a flow rate and a surface flowing pressure, usually atmospheric for most blowouts. The flowing bottom hole pressure is then calculated for this flow rate and for a range of other assumed flow rates. A plot of the flow rates versus the flowing bottom hole pressures is the flow string resistance curve. Calculation of the bottom hole pressure required to achieve a given flow rate in a gas well is accomplished by applying the general energy equation over the flow path. For a flowing gas well the bottom hole pressure can be expressed as the sum of the surface pressure and three integrals evaluated over the flow path, or $$p_W = p_S + \frac{1}{144} \int \rho dZ + \int dp_f + \frac{1}{144g} \int \rho v dv$$ (8.1) where: p_w = bottom hole pressure, psia p_s = súrface pressure, psia P_f = pressure loss due to friction, psia ρ = gas density, lbs/ft³ Z = elevation above reference level, feet v = velocity of gas, ft/sec g = acceleration due to gravity, ft/sec² The first integral term in Eq. (8.1) accounts for changes in pressure due to changes in potential energy along the flow path. The second is the change in pressure over the flow path due to friction. The third accounts for changes in pressure due to changes in kinetic energy along the flow path. Numerous equations have been developed by integrating the general energy equation over flow paths of constant cross-section. The forms of these equations differ significantly because of various simplifying assumptions that were necessary in order to perform the integrations. Two of the integrated forms of the general energy equation in common use are those presented by Poettmann, (Ref. 8.1) and by Cullender and Smith (Ref. 8.2). However, with the use of modern, high-speed computers numerical integration of the basic terms in the general energy equation can be easily accomplished. This approach is recommended because it is more readily understood and offers greater flexibility than the integrated forms of the general energy equation. #### 8.2 Potential Energy Term The change in pressure due to the change in potential energy over a flow path is: $$(\Delta p)_g = \frac{1}{144} \int \rho dZ \qquad (8.2)$$ If Eq. (8.2) is evaluated over a flow path length short enough to assume that the gas density remains constant, it can be shown that: $$(\Delta p)_g = \frac{0.0188 \text{ G cos } \phi \Delta L}{T} \frac{p}{z}$$ (8.3) where: G = gas specific gravity (Air = 1) dimensionless φ = deviation of the flow path from the vertical, degrees ΔL = flow path length, feet p = average pressure in length ΔL , psia T = average temperature in length ΔL , degrees Rankine z = gas deviation factor at p & T, dimensionless #### 8.3 Friction Term The change in pressure due to viscous effects is a measure of the mechanical energy transformed into heat by frictional resistance. This change due to frictional resistance over the flow path is: $$(\Delta p)_{f} = \int dp_{f}$$ (8.4) If Eq. (8.4) is integrated over a flow path length short enough to assume that the gas density remains constant, it can be shown that: $$(\Delta p)_{f} = 0.0000316 \text{ F} \frac{GTz}{p} \frac{Q^{2}}{A^{2}}$$ (8.5) where: F = a dimensionless factor that is dependent on the flow geometry. Q = the flow rate in MMSCF/D at standard conditions of 14.7 psia and 60°F. A = cross-sectional area, sq ft. In the use of Eq. (8.5) the flow path should be divided into segments such that the pressure drop across a segment does not exceed ten percent of the upstream pressure with a minimum value of 10 psi. The determination of the dimensionless factor F is discussed below for a variety of flow geometries. #### Circular Pipe Flow For flow, through a circular pipe the factor F can be expressed as $$F = f(\Delta L/D)$$ (8.6) where f is a dimensionless friction factor and D is the internal pipe diameter in feet. For completely turbulent flow or in the transition zone between turbulent and laminar flow, the friction factor f can be computed using the Colebrook equation (Ref. 8.3). $$\frac{1}{\sqrt{f}} = -2 \log_{10} \left[0.269 \frac{\varepsilon}{D} + \frac{2.51}{R_{e} \sqrt{f}} \right]$$ (8.7) where ϵ is the absolute roughness in feet and $^R{}_{\mbox{e}}$ is Reynold's Number, dimensionless. The Reynolds Number can be computed from Friction factors for pipe flow. (After Crane, Ref. 8.4.) 8,1, Fig. $$R_{e} = 1684 \frac{G Q}{u D} \tag{8.8}$$ where μ is the gas viscosity in centipoises at prevailing temperature and pressure and Q is the flow rate in MMSCF/D. Equation (8.7) has been solved for the friction factor f over a wide range of the parameters. The results have been plotted and are shown in Fig. 8.1 which can be used to determine the friction factor for any set of flow parameters. #### Annular Flow For flow through an annulus an equivalent diameter is computed for the annulus using the "hydraulic radius" concept. The equivalent diameter for an annulus is: $$D_{e} = D_{o} - D_{i} \tag{8.9}$$ where $^{D}_{e}$, $^{D}_{o}$ and $^{D}_{i}$ are the equivalent, outer and inner diameters, respectively, expressed in feet. Equation (8.5) can be used to compute pressure changes that occur during annular flow. The factor, F, is: $$F = f (\Delta L/D_{\rho})$$ (8.10) The cross sectional area is calculated by: $$A = \pi (D_0^2 - D_i^2) / 4 \tag{8.11}$$ The absolute roughness of the annulus can be determined from Ref. 8.5, $$\varepsilon_{e} = \varepsilon_{o} \left(\frac{D_{o}}{D_{o} + D_{i}} \right) + \varepsilon_{i} \left(\frac{D_{i}}{D_{o} + D_{o}} \right)$$ (8.12) where ε_e , ε_o and ε_i are the absolute roughness in feet for the annulus, outer wall and inner wall, respectively. The relative roughness to be used in Eq. (8.7) or Fig. 8.1 for ε/D for determining the friction factor f for annular flow is: Relative Roughness = $$\epsilon_e/D_e$$ (8.13) | For Sonic Velocity $k = 1.3$ | | | | | | | |------------------------------|-------------------------|------|--|--|--|--| | К | $\frac{\Delta P}{P'_1}$ | Y | | | | | | 1.2 | .525 | .612 | | | | | | 1.5 | .550 | .631 | | | | | | 2.0 | .593 | .635 | | | | | | 3 | .642 | .658 | | | | | | 4 | .678 | .670 | | | | | | 6 | .722 | .685 | | | | | | 8 | .750 | .698 | | | | | | 10 | .773 | .705 | | | | | | 15 | .807 | .718 | | | | | | 20 | .831 | .718 | | | | | | 40 | .877 | .718 | | | | | | 100 | .920 | .718 | | | | | | For Sonic Velocity $k = 1.4$ | | | | | | | |------------------------------|-------------------------|------|--|--|--|--| | K | $\frac{\Delta P}{P'_1}$ | Y | | | | | | 1.2 | .552 | .588 | | | | | | 1.5 | .576 | .606 | | | | | | 2.0 | .612 | .622 | | | | | | 3 | .662 | .639 | | | | | | 4 | .697 | .649 | | | | | | 6 | .737 | .671 | | | | | | 8 | .762 | .685 | | | | | | 10 | .784 | .695 | | | | | | 15 | .818 | .702 | | | | | | 20 | .839 | .710 | | | | | | 40 | .883 | .710 | | | | | | 00 | .926 | .710 | | | | | **Limiting Factors** Fig. 8.2. Net expansion factors for flow of gases to large flow areas. (After Crane, Ref. 8.4.) ### Flow Through Valves and Fittings For flow through valves and fittings the factor, $\mbox{\bf F}\,\mbox{\bf ,}$ is: $$F = K/Y^2 \tag{8.14}$$ where K is a dimensionless resistance coefficient for a specific valve or fitting and Y a net expansion factor, also dimensionless. The resistance coefficient, K, for valves and fittings must be determined from flow tests. This information is usually available from the manufacturer of the valve or fitting. The net expansion factor, Y, compensates for the changes in fluid properties due to expansion of the fluid caused by a sudden change in pressure. Net expansion factors can be obtained from Fig. 8.2. #### Other Resistances to Flow In
addition to the resistances of valves and fittings, discussed above, there are changes in pressure due to sudden enlargement and sudden contraction. Also, when a fluid enters or leaves an open end pipe, there are entrance and exit resistances. The changes in pressure for these conditions can be computed using Eqs. (8.5) and (8.14). Expansion factors Y can be obtained from Fig. 8.2 and resistance coefficients K can be obtained from Fig. 8.3. Note that the values for the resistance coefficient K given in Fig. 8.3 for sudden enlargement or sudden contraction are based on velocity in the smaller pipe. #### 8.4 Kinetic Energy Term Ordinarily, in problems involving flow of compressible fluids in a pipe, the change in pressure due to changes in kinetic energy are neglected. The justification for this is that the kinetic energy term is usually small compared to the viscous effects term. The exception is when flow is taking place through a nozzle or orifice. The equation for computing changes in pressure due to flow through a nozzle or orifice is: $$(\Delta p)_{j} = 1.049 \frac{GT}{d_{o}} + \frac{1}{Y^{2}C^{2}} \frac{1}{\tilde{p}_{i}} Q^{2}$$ (8.15) where $(\Delta p)_j$ is the difference in psi between the upstream and downstream pressures, p_1 is the upstream pressure, d_0 is the throat diameter of the nozzle or orifice in inches and C is a dimensionless nozzle or orifice coefficient. Q as elsewhere in this section is in MMSCF/D. Values for flow coefficients, C, can be obtained from Fig. 8.4 and values for net expansion factors can be obtained from Fig. 8.5. The solution of Eq. (8.15) requires an iterative procedure as will be illustrated in the example calculation. Fig. 8.3. Resistance coefficients for sudden enlargements and contractions (upper) and for exit and entrance effects (lower). (After Crane, Ref. 8.4). ### 8.5 Limiting Flow of Compressible Fluids Implicit in Eq. (8.5) and (8.15) for computing pressure changes due to viscous effects and kinetic energy changes is the gas velocity v. The gas velocity can be related to the gas flow rate Q in MMSCF/D at standard conditions of 14.7 psia and $60^{\circ}F$ by: $$v = 0.329 \frac{OT}{A} \frac{z}{p}$$ (8.16) However, the velocity cannot exceed the sonic velocity \mathbf{v}_{s} of the fluid, which is given by: $$v_s = 41.43 \left[\frac{kTz}{G}\right]^{0.5}$$ (8.17) where k is the ratio of the specific heat at constant pressure to that at constant volume, dimensionless. The pressure $P_{\rm S}$ at the point in the flow path where sonic velocity is reached can be computed by equating Eqs. (8.16) and (8.17). This equality can be solved to obtain a formula for $p_{\rm S}$, or: $$p_{s} = \frac{0.00789 \, Q}{A} \left[\frac{GTz}{k} \right]^{0.5}$$ (8.18) The point at which sonic velocity occurs in a flow system is usually in a nozzle, an orifice, a valve or fitting, a sudden contraction, or where the system exits to a much larger flow area, e.g., to the atmosphere. Ratios of pressure drop to upstream pressure above which sonic velocity is reached are tabulated in Fig. 8.2. These apply to valves, fittings sudden contractions and exits to much larger areas. Limiting values of the ratios of downstream pressure to upstream pressure for nozzles and Venturi tubes are given in Fig. 8.6. #### 8.6 Calculation Procedure The geometry of the flow path in an uncontrolled gas well can be extremely complex. Flow may be occurring through the drill string, the annulus, or both. Several changes in cross sectional area may be present, and a portion of the well may be inclined significantly from the vertical. Multiple valves and restrictions may be present and sonic choking is possible at these restrictions as well as at the surface. The best calculation procedure to use depends upon the flow geometry involved. However, the recommended basic approach is as follows: - 1. Assume a gas flow rate, Q. - 2. Starting with a known pressure $^{p}_{O}$ at location $^{L}_{O}$, select a pressure increment $_{\Delta P}$. Take $_{\Delta P}$ < 10% of $^{p}_{O}$, with a minimum value of 10 psi. - 3. Calculate the average pressure and average temperature for the increment. #### Flow Coefficient C for Nozzles⁷ Data from Regeln fuer die Durchflussmessung mit genormten Duesen und Blenden. VDI-Verlag G. mb. H., Berlin, SNW, 7, 1937. Published as Technical Memorandum 952 by the NACA. $$C = \frac{C_d}{\sqrt{1 - \left(\frac{d_0}{d_1}\right)}}$$ Example: The flow coefficient C for a diameter ratio d_0/d_1 of 0.60 at a Reynolds number of 20,000 (2 x 104) equals 1.01. #### Flow Coefficient C for Square Edged Orifices 7, 17 $C = \frac{C_d}{\sqrt{1 - \left(\frac{d_0}{d_1}\right)^2}}$ Lower chart data from Regeln fuer die Durchflussmessung mit genormtem Duesen und Blenden. VDI-Verlag G. m.b.H., Berlin, SNW. 7, 1937. Published as Technical Memorandum 952 by the NACA. Fig. 8.4. Flow coefficients for nozzles and orifices. (After Crane, Ref. 8.4.) 7 Fig. 8.5. Net expansion factors for compressible flow through orifices and nozzles. (After Crane, Ref. 8.4). Fig. 8.6. Critical pressure ratios for sonic flow through Venturi tubes and orifices. (After Crane, Ref. 8.4). $k = c_p/c_p$ - 4. Determine the gas deviation factor, z, and the gas viscosity, μ , at conditions of average pressure and temperature. - 5. Calculate the flowing pressure gradient, dp/dL, for the increment using Eqs. (8.3) and (8.5). - 6. Calculate the length increment corresponding to the selected pressure increment, $\Delta L = \Delta p/(dp/dL).$ - 7. Set $p = p_0 + \Sigma \Delta p$ and $L = L_0 + \Sigma \Delta L$. - 8. If $\Sigma\Delta L$ is less than the total flow path length repeat the procedure from step 2 using p and L as the starting pressure and location and taking $\Delta p < 10\%$ of p with a minimum value of 10 psi. If $\Sigma\Delta L$ is greater than the total flow path length, interpolate between the last two values of L to obtain the pressure at the end of the flow path. - 9. Assume a new value for the flow rate and repeat the calculations. Continue until sufficient data is obtained to define the flow string resistance curve, i.e., a plot of flow rate versus flowing bottom hole pressure. Pressure drops across valves, fittings, or restrictions must be accounted for in the calculation procedure. Also, it will be necessary to check each exit, valve, fitting or restriction to see if sonic velocity has been reached. Once the flow rate is high enough for sonic flow to be achieved at some point, the starting point for the calculation procedure can be moved from the surface to that point. The pressure at the point where sonic velocity has been reached can be computed using Eq. (8.17). #### 8.7 <u>Illustrative Example</u> As an illustrative example consider a gas blowout which occurred during drilling operations. The blow-out occurred when a drill pipe safety valve failed after the well had kicked. When attempts to stab the Kelly into the safety valve were not successful, the rig personnel evacuated the rig floor, and the well blew out. The well geometry associated with the blowout is shown in Fig. 8.7. Based on the ball position of the drill pipe safety valve, the area of the opening through which the gas was blowing was computed to be 1.2 sq in. The valve body had a diameter of 3.25 inches. The bit at the bottom of the drill string contained three 13/32 inch nozzles. The estimated formation pressure at the time of the blowout was 8000 psia, based on the mud density while drilling and an assumed 750 psia underbalance. The estimated formation temperature is $250^{\circ}F$ ($710^{\circ}R$), which is also assumed to be the gas temperature throughout the flow string. Figure 8.8 provides values for the gas deviation factor and viscosity of methane at $250^{\circ}F$, as functions of pressure. The ratio of the specific heats k is taken as 1.3. #### 8.8 Solution of Illustrative Example The flowing bottom hole pressure will be computed at flow rate increments of 10 MMSCF/D, starting with 10 MMSCF/D, until the bottom hole pressure exceeds the estimated formation pressure, 8000 psia. The gas temperature is assumed constant over the flow path and equal to the estimated bottom hole temperature of 250°F. Completely turbulent flow is assumed for the start of all calculations and is verified by computing Reynolds Numbers where appropriate. The calculations are made in five steps, to find the following: - Pressure at the downstream side of the safety valve. - Pressure at the upstream side of the safety valve, also the pressure at the top of the drill pipe. - 3. Pressure at the bottom of the drill pipe. - 4. Pressure at the bottom of the drill collars. - 5. Pressure drop across the bit nozzles, and then the flowing bottom hole pressure. #### Step 1. Surface Pressure The first step is to obtain a starting pressure, in this case the downstream pressure at the safety valve. If flow through the safety valve is subsonic the exit pressure will be atmospheric. If the flow is sonic the pressure will be greater than atmospheric. As the resistance coefficient K for the valve is unknown, the Fig. 8.7. Sketch showing the well geometry for the example of Sec. 8.7. valve is treated as a square edged crifice whose area is 1.2 square inches whose equivalent throat diameter is $$d_0 = \sqrt{(4)(1.2)/\pi} = 1.24$$ inches ો Fig. 8.8. Gas deviation factors and visicosities for methane (G = 0.55) at 250° F. Assuming subsonic flow for which the well head pressure is atmospheric, taken as 14.7 psia, the theoretical velocity computed by Eq. (8.16) is $$v = \frac{(0.329)(10)(250+460)}{1.2/144} \frac{1}{14.7} = 19,069 \text{ ft/sec}$$ But by Eq. (8.17) sonic velocity for methane gas in the valve is: $$v_s = 41.43 \left[\frac{(1.3)(710)z}{0.55} \right]^{0.5} = 1697 [z]^{0.5}$$ ft/sec As $z \le 1.0$ the maximum velocity through the valve is less than 1697 ft/sec, and as the calculated subsonic value is much larger, 19,069 ft/sec, flow through the valve is sonic.
The pressure at the valve exit can be estimated using Eq. (8.18). $$p_s = \frac{0.00789 \times 10}{1.2/144} \left[\frac{(0.55)(710)(z)}{1.3} \right]^{0.5} = 164 z^{0.5} \text{ psia}$$ Table I shows the solution by iteration using Fig. 8.8 for values of z, to obtain a downstream pressure at the safety valve of 164 psia. Table I | Trial | p _s | z(Fig.8.8) | 164√z | |-------|----------------|------------|-------| | 1 | 14.7 | 1 | 164 | | _ 2 | 164 | ` 1 | 164 | # Step 2. Upstream Pressure at the Safety Valve Using a downstream pressure of 164 psia the upstream pressure at the safety valve is next computed. To do this, first calculate the ratio of the orifice diameter to the pipe diameter as $$d_0/d_1 = 1.24/3.64 = 0.341$$ From Fig. 8.4 the flow coefficient C of the orifice is 0.603, and using this value in Eq. (8.15) the pressure drop across the valve is $\frac{1}{2}$ $$(\Delta p)_{j} = (p_{1}-164)$$ $$= \frac{(1.049)(0.55)(710)}{(1.24)^{4}} \cdot \frac{1}{(0.603)^{2}Y^{2}} \cdot \frac{1}{p_{1}} \cdot 10^{2}$$ $$(p_{1}-164)p_{1} = \frac{47651}{Y^{2}}$$ This quadratic equation is solved by iteration as shown in Table II, using Fig. 8.5 to obtain values for Y. This gives a value of 360 psia for p_1 , the pressure just upstream of the valve, at the top of the drill pipe. Table II | Trial | Y(Fig.8.5) | <u> P1</u> | Δp | <u>Δ</u> þ/p ₁ | |-------|------------|------------|-----|---------------------------| | 1 | 1 | 315 | 151 | 0.48 | | 2 | 0.84 | 354 | 190 | 0.54 | | 3 | 0.82 | 360 | 196 | 0.54 | | 4 | 0.82 | 360 | | | # Step 3. Pressure at the Bottom of the Drill Pipe Next total flowing pressure gradient at any point in the drill string is determined by combining Eqs. (8.3), (8.5), and (8.6) $$\frac{\Delta p}{\Delta L} = \frac{0.0188 \text{ G} \cos \phi}{T} \frac{p}{z} + 0.0000316 \frac{f}{D} \frac{GTz}{p} \frac{Q^2}{A^2}$$ From 0 to 3000 feet, the hole is vertical, $cos\phi$ = 1 and the total gradient is $$\frac{\Delta p}{\Delta L} = \frac{(0.0188)(0.55)(1)}{710} \frac{p}{z}$$ $$+ \frac{(0.0000316)(0.55)(710)(10)^{2}}{[3.64/12][(\pi)(3.64)^{2}/(4)(144)]^{2}} \frac{fz}{p}$$ $$= 1.45 \times 10^{-5} \frac{p}{z} + 778.982 \frac{fz}{p}$$ An absolute roughness of 0.00065 inches is commonly used for drill pipe. This yields a relative roughness of $$e/d = 0.00065/3.64 = 0.000179$$ The Reynolds Number calculated using Eq. (8.8) is $$R_e = \frac{(1684)(0.55)(10)}{\mu (3.64/12)} = \frac{30534}{\mu}$$ The pressure at 3000 feet (measured depth) can be determined by starting with a surface pressure of 360 psia and numerically integrating down to 3000 feet. The numerical integration is shown in Table III. Table III | ran din i | | Committee Control Co. | a an include a special device | Acres 1908 September 1 | | | | | | |----------------|---------|-----------------------|-------------------------------|------------------------|----------------|--------|-------|------|-------| | === | Δp<0.lp | p _{avg} | Z | <u> </u> | R _e | f | Δρ/ΔL | ΔL | Depth | | 360 | 30 | | 0.99 | 0.014 | 2,181,000 | 0.0138 | 0.034 | 882 | 0 | | 390 | 30 | 405 | 0.99 | 0.014 | 2,181,000 | 0.0138 | 0.032 | 938 | 882 | | 420 | 40 | 440 | 0.99 | 0.014 | 2,181,000 | 0.0138 | 0.031 | 1290 | 1820 | | 460 | | | | | | | | | 3110 | | | | | | | | | | | | Interpolating to find the pressure at 3000 ft, $$p_{3000} = 460 - \frac{40}{1290}(3110-3000) = 456 \text{ psia}$$ From 3000 to 14,000 feet (measured depth) the hole deviates 15 degrees from the vertical and the flowing pressure gradient at any point is given by $$\frac{\Delta p}{\Delta L} = (1.456 \times 10^{-5}) (\cos 15^{\circ}) \frac{p}{z} + 778.982 \frac{fz}{p}$$ $$= 1.406 \times 10^{-5} \frac{p}{z} + 778.982 \frac{fz}{p}$$ The pressure at 14,000 feet (measured depth) can be determined by starting with a pressure of 456 psia at 3000 feet, and numerically integrating down to 14,000 feet. The numerical integration is shown in Table IV. Interpolating to find the pressure at 14,000 ft, $$p_{14,000} = 750 - \frac{20}{800} (14,051-14,000) = \frac{749 \text{ psia}}{200}$$ The pressure drop due to the sudden enlargement at the top of the collars is computed using Eqs. (8.5) and (8.15) and Figs. 8.2, 8.3, and 8.8. $$\Delta p = p_1 - p_2 = 0.0000316 \frac{K}{Y^2} \frac{GTZ}{p_1} \frac{Q^2}{A^2}$$ Table IV | p | p≤0.1p | pava | 7 | | R _e | | | | | |--|--------|------|------|----------|----------------|----------|---------------------|------------|--------| | <u>- </u> | Р | avs | Z | <u> </u> | e | <u>f</u> | $\Delta p/\Delta L$ | ΔL | Depth | | 456 | 44 | 478 | 0.99 | 0.014 | 2,181,000 | 0.0138 | 0.029 | 1517 | 3,000 | | 500 | 50 | 525 | 0.99 | 0.014 | 2,181,000 | 0.0138 | 0.028 | 1786 | 4,517 | | 550 | 54 | 577 | 0.99 | 0.014 | 2,181,000 | 0.0138 | 0.027 | 2000 | 6,303 | | 604 | 60 | 634 | 0.99 | 0.014 | 2,181,000 | 0.0138 | 0.026 | 2308 | 8,303 | | 664 | 66 | 697 | 0.98 | 0.014 | 2,181,000 | 0.0138 | 0.025 | 2640 | 10,611 | | 730 | 20 | 740 | 0.98 | 0.014 | 2,181,000 | 0.0138 | 0.025 | 800 | 13,251 | | 750 | | | | | | | | | 14,051 | $$(p_1-749)p_1 = \frac{(0.0000316)(0.55)(710)(10)^2}{[(\pi)(2.375)^2/(4)(144)]^2} \frac{Kz}{Y^2}$$ $$= 1304 Kz/Y^2$$ The diameter ratio is) $$d_1/d_2 = 2.375/3.64 = 0.652$$ $$(p_1-749)p_1 = (1304)(0.32) \frac{z}{Y^2} = 417 \frac{z}{Y^2}$$ This expression is solved by iteration using Figs. 8.2 and 8.8 as shown in Table V to give a value of 749.55 psia, say 750 psia for p . Table V | Trial | z(Fig.8.8) | Y(Fig.8.2) | р1 | ∆ p | Δp/p ₁ | |-------|------------|------------|--------|------------|-------------------| | 1 | 1 | 1 | 749.56 | 0.56 | 0.0007 | | 2 | 0.98 | 1 | 749.55 | 0.55 | 0.0007 | # Step 4. Pressure at the Bottom of the Drill Collars Proceeding with the pressure change calculations in the drill collars, the Reynolds Number by Eq. (8.8) is $$R_{e} = \frac{(1684)(0.55)(10)}{\mu(2.375/12)} = \frac{46797}{\mu}$$ For an absolute roughness of 0.00065 in and 2.375 in I.D. for the drill collars, the relative roughness is 0.000274. From 14,000 to 14,388 feet (measured depth) the flowing pressure gradient in the drill collars is calculated using Eq. (8.3), (8.5) and (8.6) $$\frac{\Delta p}{\Delta L} = 1.406 \times 10^{-5} \frac{p}{z} + 6587.438 \frac{fz}{p}$$ The pressure at 14,388 feet (measured depth) is determined by starting with a pressure of 750 psia at 14,000 feet and numerically integrating down to 14,388 feet. The results of these numerical integrations are shown in Table VI. Table VI | | <u>Δp≤0.lp</u> | P _{avg} | Z | μ | R _e | f | Δρ/ΔL | ΔL | Depth | |-----|----------------|------------------|------|-------|----------------|--------|-------|-----|--------| | 750 | 20 | 760 | 0.98 | 0.015 | 3,119,800 | 0.0145 | 0.134 | 149 | 14,000 | | 770 | 20 | 780 | 0.98 | 0.015 | 3,119,800 | 0.0145 | 0.131 | 153 | 14,149 | | 790 | 20 | 800 | 0.98 | 0.015 | 3,119,800 | 0.0145 | 0.128 | 156 | 14,302 | | 810 | | | | | | | | | 14,458 | Interpolating, the pressure at the bottom of the drill collars is $$p_{14,388} = 810 - \frac{(14,458-14,388)}{156} 20 = 801 \text{ psia}$$ # Step 5. Pressure Drop Through the Bit Nozzles The final step is to compute the pressure drop across the bit. If sonic flow is taking place through the three 13/32 inch nozzles the downstream pressure can be computed using Eq. (8.18). The area A of the three bit nozzles is $$A = \frac{(3)(3.14)(13/32)^2}{(4)(144)} = 0.0027 \text{ ft}^2$$ and the downstream pressure for 10 MMSCF/D is $$P_{s} = \frac{(0.00789)(10)}{(0.0027)} \left[\frac{(0.55)(710)z}{(1.3)} \right]^{0.5}$$ $$p_s = 506 z^{0.5}$$ Solving for p_s by iteration $p_s = 501$ psia. Because this pressure is less than the actual down-stream pressure (801 psia) the flow through the nozzles is subsonic. Since the flow through the nozzles is sub- sonic the assumption that sonic flow occurred only at the safety valve is correct. The pressure drop across the bit can be computed using Eq. (8.15) and Figs. 8.4 and 8.5, assuming the flow rate through each nozzle is 10/3 MMSCF/D, or $$(\Delta p)_{j} = (p_{bh} - 801) = \frac{(1.049)(0.55)(710)}{(13/32)^{4}} \frac{1}{Y^{2}C^{2}} \frac{1}{p_{bh}} (10/3)^{2}$$ from which, $$(p_{bh}-801)p_{bh} = \frac{167102}{Y^2C^2}$$ The diameter ratio $$d_0/d_1 \simeq 0$$ From Fig. 8.4 the flow coefficient C for the nozzles is 0.985, hence $$(p_{bh}-801)p_{bh} = \frac{172230}{Y^2}$$ This equation is solved by iteration as shown in Table VII using Fig. 8.5 for values of Y and gives a value of 1028 psia for pressure below the bit, i.e., the flowing bottom hole pressure. # Bottom Hole Pressures for Other Flow Rates In order to determine the flow string resistance curve, the five step calculation procedure is repeated at incremental values of assumed flow rates and the Table VII | Trial | Y(Fig.8.5) | p _{bh} | Δр | Δp/p _{bh} | |-------|------------|-----------------|-----|--------------------| | 1 | 1 | 977 | 176 | 0.18 | | 2 | 0.89 | 1015 | 214 | 0.21 | | 3 | 0.87 | 1023 | 222 | 0.22 | | . 4 | 0.86 | 1028 | 227 | 0.22 | | | | | | | flowing bottom hole pressure calculated for each flow rate. Table VIII gives the calculated pressures on the upstream side of the safety valve, on the downstream side of the bit and finally the bottom hole pressure. Figure 8.9 is a plot of the flow string resistance curve for this example. It indicates a maximum possible flow rate of 79 MMSCF/D, i.e. when the flowing bottom hole pressure is equal to the estimated static formation pressure (8000 psia). There is, of course, a pressure drop in the formation as the gas flows to the bore hole. If, for example, the formation pressure drop is 2000 psi, the blowout rate is about 60 MMSCF/D. Table VIII | Q
MMSCF/D | Pressure Upstream of Safety Valve | Pressure Downstream
of Bit
(psia) | Bottom Hole
Pressure
(psia) | |--------------|-----------------------------------|---|-----------------------------------| | 10 | 360 | 798 | 1028 | | 20 | 725 |
1505 | 1984 | | 30 | 1087 | 2207 | 2944 | | 40 | 1450 | 3010 | 3969 | | 50 | 1790 | 3710 | 4933 | | 60 | 2130 | 4490 | 5950 | | 70 | 2497 | 5277 | 6953 | | 80 | 2860 | 6340 | 8156 | # 8.9 Critique of Computational Procedure The three parameters that are not known accurately in the calculation procedure are the absolute roughness of the drill pipe, the mean temperature of the flowing gas, and the gas gravity. To determine the sensitivity of the computational procedure to changes in these parameters, an error analysis was made at a flow rate of 60 MMSCF/D. If the absolute roughness is taken as 0.0065 inches instead of 0.00065 inches (a 900% increase) the computed bottom hole pressure is 6844 psia instead of 5950 psia. This is a 15 per cent increase in bottom hole pressure. If the mean temperature is taken as $150^{\circ}F$ instead of $250^{\circ}F$ (a 40% decrease) the computed bottom hole pressure is 5657 psia instead of 5950 psia. This is a 5 percent decrease in bottom hole pressure.) Fig. 8.9. Flow string resistance curve for the example of Secs. 8.7 and 8.8. If the gas gravity is taken as 0.7 instead of 0.55 (a 27% increase) the computed bottom hole pressure is 6964 psia instead of 5950 psia. This is a 15 percent increase in bottom hole pressure. The above analysis indicates the importance of an accurate determination of gas gravity. Though not as important as gas gravity, a reasonably accurate estimate of the mean temperature is needed. The least important parameter is the absolute roughness. Any reasonable estimate of absolute roughness should suffice. Other factors that can affect the accuracy of the computational procedure are the presence of water and/or consensate. The presence of liquid will cause the bottom hole pressure determined using the computational procedure for a given flow rate to be too low. This means that the flow string resistance curve of Fig. 7.1 would shift to the right. Hence, for a given bottom hole pressure, the two-phase flow rate will be less than that for the case of dry gas. The difficulty in determining an accurate geometry of the gas flow path can have a major effect on the accuracy of the computational procedure. This is especially troublesome when flow is in the annulus or downhole tubulars have failed. Every effort should be made to make an accurate determination of the gas flow path. # 8.10 Conclusions and Recommendations If an accurate determination of the gas flow path has been made and reasonably accurate values of absolute roughness, mean temperature of the flowing gas, and the gas gravity are available, the computational procedure presented in this chapter should yield a flow string resistance that is within 20 percent of the actual value for a given flow rate. The procedure is very tedious and time consuming and should be programmed for use on a high-speed digital computer. # SECTION 9 CROSS PLOTS OF FORMATION AND FLOW STRING RESISTANCES #### 9.1 Introduction) The methods for calculating formation and flow string resistances have been discussed in Sections 7 and 8, respectively, where it was shown that crossplots of these two curves can be used to estimate blowout rates. It was pointed out in Sec. 7.4 that in most cases the major cause for uncertainty in the formation resistance curves was caused by uncertainties in formation permeability and thickness. The product of permeability and formation thickness is called formation capacity, or simply capacity. It is usually expressed in units of millidarcy-feet (md-ft). In this section special consideration is given to the effect of uncertainty in formation capacity on estimated blowout rates. The theories and calculations of Sections 7 and 8 also provide the insight for the generalizations Fig. 9.1. Generalized formation and flow string resistance curves showing the effects of formation capacity and effective flow string diameter. expressed by Fig. 9.1. As would be expected, maximum blowout rates occur for higher formation capacities and larger effective flow string diameters, point A. Conversely, also to be expected, low formation capacities and small effective flow string diameters cause lower blowout rates, as at point D. Figure 9.1 should not be used except for generalization as indicated above. Instead, for each blow-out similar curves should be calculated as shown in Sections 7 and 8. # 9.2 Effect of Formation Capacity The formation resistance curves of Fig. 9.2 are based on Eq. (7.2), the steady-state formula for gas flow. Equations (7.3), (7.4) and (7.7) may also be used, as appropriate. Example 9.1 shows the calculation of a point on the 2000 md-ft formation resistance curve, i.e., 233 MMSCF/D for a flowing bottom hole Fig. 9.2. Formation resistance curves for capacities of 100, 200, 500 and 2000 md-ft. pressure of 6000 psia. #### Example 9.1 Data:) $$q_{sc} = \frac{703 \text{ kh}(p_e^2 - p_w^2)}{\mu Tz \ln(r_e/r_w)}$$ $$q_{sc} = \frac{703x2.0x(8000^2-6000^2)}{0.024x710x1.11x9}$$ $$q_{sc} = 233 \text{ MMSCF/D}$$ The flow string resistance curve of fig. 9.2 is the one calculated for the base condition of the example of Secs. (8.7) and (8.8) and shown in Fig. 8.9. Because of the small uncertainty in the flow string resistance curve, at least with respect to the large uncertainty in the formation resistance curve, only one flow string resistance curve is shown in Fig. 9.2. (2.0 darcy-ft) Figure 9.2 shows the uncertainty in the estimated blowout rate caused by uncertainty in the formation capacity. However, it is noted in this example that a twenty-fold range in formation capacity (100 to 2000 md-ft) causes only a little more than a two-fold change in the blowout rate, i.e., from 72 MMSCF/D for 2000 md-ft to 32 MMSCF/D for 100 md-ft. In many, if not most cases, the uncertainty in the formation capacity should be considerably less than a twenty-fold range, certainly where there are producing wells in the reservoir, drilled either prior to or after the blowout. Fig. 9.3. Blowout rate as a function of formation capacity. Figure 9.3 is a cross-plot of the data of Fig. 9.2, and further illustrates the effect of formation capacity in the estimated blowout rate, for a particular flow string resistance curve. #### 9.3 Cratered Wells and Underwater Blowouts Of the several methods presented only that of cross-plotting calculated formation and flow string resistances does not depend upon some sort(s) of measurement(s). This method is therefore applicable to cratered wells and underwater blowouts but with the additional uncertainty in the pressure at the outlet end of the flow string, now no longer atmospheric. Use of the method assuming atmospheric pressure at the outlet will provide estimates of the maximum flow rate. Also, as explained below, considerable increases in outlet pressure above atmospheric pressure cause relatively small reductions in the flow rates. For gas flow in vertical pipes Smith's formula (Ref. 9.1) may be expressed as $$q_{SC} = C[p_w^2 - e^S p_0^2]^{0.5} \dots (9.1)$$ The following application of Eq. (9.1) will serve to define its terms and units. #### Data: •) X = 8000 feet, elevation difference between pressure points p and po. p_e = 4000 psia, external reservoir pressure $T = 620^{\circ}$ Rankine, average temperature in the flow string. z = 1.00, average gas deviation factor for gas in the flow string. G = 0.70, gas specific gravity (air = 1). S = 0.0375 G X/T z $S = 0.0375 \times 0.70 \times 8000/620 \times 1.00$ S = 0.34 and $e^{S} = 2.718^{0.34} = 1.40$ $p_e = 4000 \text{ psia}$ Case I $p_{w} = 3000$ psia, flowing bottom hole pressure $p_0 = 14.7$ psia, flow string outlet pressure $q_{SC} = C[3000^2 - 1.40 \times 14.7^2]^{0.5}$ $q_{sc} = 3000 C$ and for p_o = 1,000 psia $q_{sc} = C[3000^2 - 1.40 \times 1000^2]^{0.5}$ $q_{sc} = 2757 C$ Flow Reduction = $\frac{3000 - 2757}{3000}$ x 100 = 8% $p_e = 4000 \text{ psia}$ Case II p_w = 2000 psia $p_{O} = 14.7 \text{ psia}$ $q_{sc} = C[2000^2 - 1.40 \times 14.7^2]^{0.5}$ q_{s·c} = 2000 C and for p_o = 700 psia $q_{sc} = C[2000^2 - 1.40 \times 700^2]^{0.5}$ $q_{sc} = 1820 C$ Flow Reduction = $\frac{2000 - 1820}{2000} = 9\%$ The above example illustrates the relatively small effect a substantial increase in outlet pressure has on the flow rate. It is noted that a blowout from a sea floor assembly at a depth of 1500 feet has an outlet pressure near 700 psia. For a more precise evaluation of the effect of outlet pressure on flow rate, the method of Section 8 should be used. # SECTION 10 SUGGESTIONS FOR FURTHER INVESTIGATION #### 10.1 Introduction The foregoing sections have presented the state of the art for determining gas flow rates and vented volumes during blowouts. Such presentations naturally evoke thought on further work which might improve the determinations. Suggestions for further work are of two kinds: those which seek to improve or refine current technology and those which propose new technology, either innovative or adapted from other areas of technology. All of the methods presented in this report have been developed for calculations on engineering problems other than the blowout problem, and have therefore received periodic improvement and refinement. In any event the precision of these methods as applicable to the gas well blowout problem is more than adequate because of the complex nature of the problem and because of the unavailability and/or imprecision of some of the data. Therefore, improvement in the determination of vented gas volumes lies in the development of new technology. # 10.2 Suggestions for New Technology Among the suggestions received or conceived during these investigations there are four which appear to merit further consideration. No claim is made for an in-depth look into the feasibility of these suggested methods, which are briefly discussed in the following. ## 10.2.1 Heat Flux Where blowing gas wells have been ignited, assuming complete combustion, the heat flux from the well is the product of the gas flow rate
and the heating value of the gas. If the heat flux can be measured, in BTU/day for example, then by dividing into it the measured or estimated heating value of the gas, in BTU/SCF, the flow rate in SCF/day is obtained. The heat flux is a combination of radiation and convection. It is possible that aerial surveys above and around the burning plume using suitable measuring devices could provide data for determining the total heat flux. To handle the problem of incomplete combustion it is suggested that suitably taken samples can be analyzed for carbon, carbon monoxide, carbon dioxide and hydrocarbons. The most attractive feature of this proposed method is that it can be applied to all burning gas wells and, more important, it does not require operations at or near the well location. It is therefore of interest for offshore blowouts where operations at or near the wellhead are usually precluded. #### 10.2.2 Bullet Trajectory A suggestion of the possible use of bullet trajectory was received from the Research Program, Branch of Marine Oil and Gas Operations of the Geological Survey. The basic idea is similar to that of estimating the blowout rate from the deflection of a sledge hammer passed through the flow stream (Section 1.2). In this proposed method, the basic measurement would by the angular deflection of a bullet of known velocity when fired through the center of the flow stream. Although some experimentation might be required to develop this method, it is likely that there is a great deal in the relevant literature which would shed considerable light on this measurement. This method is also attractive in that it does not require operations at or very near the well head. Although apparently less adaptable to offshore gas blowouts than those on land, innovative technology might prove otherwise. # 10.2.3 Other Measurement Technology Consideration has been given to other measurement technology which involve the reaction of a sensing element placed in the flow stream. This idea envisions, for example, a heavy yoke containing a wire or rod which could be placed in the flow stream on the end of long shaft attached to a piece of heavy equipment such as a bulldozer. Although this proposed method involves operations near the blowing well, presumably measurements would not take very much time. For offshore blowouts the method would be limited to control measures in which there is a barge or platform from which to operate a bulldozer. #### 10.2.4 <u>Indirect Measurements</u> It is suggested that there are more or less precise correlations between the size and shape of a burning gas plume and its rate of flow. Other correlations are believed to exist between the flow rate and the sonic emissions at the well, i.e., the sound level in decibels and/or the frequency distribution of the sound. A third suggestion is a correlation between the flow rate and the air velocity and/or pressure distribution in the vicinity of a blowing well. Unlike the method suggested in Sec. 10.2.3, these indirect methods do not involve the insertion of a device into the flow stream. However, although suitable measurement equipment (photography, sound meters, anemometers, pressure sensors) exist, considerable effort is anticipated in establishing the necessary correlations, assuming reasonably reliable ones do exist. # 10.3 Gas - Condensate and Oil Well Blowouts It is implicit in this report that the methods presented apply only to dry gas production, i.e., that in which no liquid hydrocarbon phase develops prior to entering the atmosphere. Neither does it apply to dry gas accompanied by water production. If the methods are used for gas—condensate blow—outs or gas and gas—condensate blowouts accompanied by water production, the calculated rates and vented volumes will be larger than actual. Of course, the methods do not apply to oil well blowouts. It is suggested that these investigations be extended to include gas-condensate and oil well blowouts. #### References - 2.1 Craft, B.C. and M.F. Hawkins: Applied Petroleum Reservoir Engineering, Prentice-Hall, Inc., Englewood Cliffs, NJ (1959) 16-47. - 2.2 Ibid., 47-48. 3 - 3.1 Lichty, L.D.: "Measurement, Compression and Transmission of Natural Gas," John Wiley & Sons, Inc. (1924). - 3.2 Rawlins, E.L. and M.A. Schellhardt: "Back-Pressure Data on Natural Gas Wells and Their Application to Production Practices," U.S.B.M. Monograph 7. - 3.3 Chandler Engineering Company, 7707E 38th Street, Tulsa, Oklahoma, (918) 627-1740. - 3.4 Katz, D.L., et al: "Handbook of Natural Gas Engineering," McGraw-Hill (1959). - 3.5 The Pacific Coast Gas Association: "Gas Engineering Handbook," McGraw-Hill (1934). - 3.6 Rowse, W.C.: "Pitot Tubes for Gas Measurement," Transactions of the ASME, Vol. 35. - 4.1 API Recommended Practices for Blowout Prevention, American Petroleum Institute, API RP 53 (February, 1976). - 4.2 Shapiro, Asher H.: The Dynamics and Thermo-dynamics of Compressible Fluid Flow," Vol. I., The Ronald Press Co., New York. - 4.3 Katz, D.L., et al: <u>Handbook of Natural Gas</u> Engineering, McGraw-Hill, New York (1959). - 4.4 Nisle, R.G. and F.H. Poettmann: "Calculation of Flow and Storage of Natural Gas in Pipe," Petroleum Engineer, 27(1): D14; 27(2): C36; 27(3): D37 (1955). - 4.5 Moody, L.F.: "Friction Factors for Pipe Flow," Trans. ASME, Vol. 66 (1944). - 4.6 Crane Company: "Flow of Fluids Through Valves, Fittings and Pipe," Technical Paper No. 410. - 4.7 Standing, M.B. and D.L. Katz: "Density of Natural Gases," <u>Trans</u>. <u>AIME</u> (1942) 146. - 4.8 Brown, G.B., D.L. Katz, G.B. Oberfell and R.C. Alden: Natural Gasoline and Volatile - Hydrocarbons, Natural Gasoline Association of American, Tulsa, Oklahoma (1948) 44. - 4.9 Edmister, W.C.: "Application of Thermodynamics to Hydrocarbon Processing," Petroleum Engineer, (1948-49). - 5.1 Newendorp, P.D.: <u>Decision Analysis for Petroleum Exploration</u>, <u>Petroleum Publishing Co.</u>, Tulsa, Oklahoma (1975) 651. - 6.1 Rawlins, E.L. and M.A. Schellhardt: Back Pressure Data on Natural Gas Wells and Their Application to Production Practices, U.S. Bureau of Mines, Monograph 7. - 6.2 Craft, B.C. and M.F. Hawkins: Applied Petroleum Reservoir Engineering, Prentice Hall, Inc., Englewood Cliffs, NJ (1959). - 6.3 Elenbaas, J.R. and D.L. Katz: "A Radial Turbulent Flow Formula," Trans. AIME (1948) 186, 36. - 6.4 Graham, J.R. and W.E. Boyd: "An Analysis of Changing Backpressure Test Curves from Some Gulf Coast Area Gas Wells," J. Pet. Tech., (Dec., 1967). - 6.5 Interstate Oil Compact Commission: Manual of Back Pressure Testing of Gas Wells. - 6.6 Cullender, M.H.: "The Isochronal Performance Method of Determining Flow Characteristics of Gas Wells," Trans. AIME, Vol. 204, (1955) 137. - 6.7 Alberta Oil and Gas Conservation Board: Theory and Practice of Testing Gas Wells (1955). - 7.1 Craft, B.C. and M.F. Hawkins: Applied Petroleum Reservoir Engineering, Prentice-Hall, Inc., Englewood Cliffs, NJ (1959) 326. - 7.2 Ibid., 17-22, 264-266. - 7.3 Ibid., 333. - 7.4 Ibid., 289. - 7.5 Ibid., 269-272. - 7.6 Ibid., 295-307. - 8.1 Poettman, F.H.: "The Calculation of Pressure Drop in the Flow of Natural Gas Through Pipe," Transactions, AIME, Volume 192 (1951). - 8.2 Cullender, M.H. and R.V. Smith: "Practical Solution of Gas-Flow Equations for Wells and Pipelines with Large Temperature Gradients," Transactions, AIME, Volume 207 (1956). - 8.3 Colebrook, C.F., "Turbulent Flow in Pipes, with Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws," J. Inst. Civil Engrs. (London) Volume II (1938-1939). - 8.4 Crane Company: "Flow of Fluids Through Valves, Fittings, and Pipe," Technical Paper No. 410 (1967). - 8.5 Cornish, R.E.: "The Vertical Multiphase Flow of Oil and Gas at High Rates," J. Pet. Tech. (July, 1976). - 9.1 Smith, R.V.: "Determining Friction Factors for Measuring Productivity of Gas Wells," <u>Trans. AIME</u>, <u>189</u>, 73 (1950).